3 research outputs found

    An overview of chickpea breeding programs in Kenya

    Get PDF
    Chickpea is a new crop in Kenya and its potential has not been fully utilized. The chickpea grain yields generally range between 1.2 to 3.5 tons/ha at farmers‟ fields, indicating that chickpea has a potential of becoming an important export crop in Kenya. The chickpea breeding program in Kenya is still at infant stage and being established with support from International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Four chickpea varieties have been recently released from the breeding material supplied by ICRISAT. Efforts are being made on evaluation of germplasm and breeding lines, application of modern molecular breeding tools and techniques in chickpea breeding and establishment of effective seed system for establishing a sustainable chickpea production system in the country

    Evaluation of chickpea genotypes for resistance to Ascochyta blight (Ascochyta rabiei) disease in the dry highlands of Kenya

    Get PDF
    Chickpea (Cicer arietinum) is an edible legume grown widely for its nutritious seed, which is rich in protein, minerals, vitamins and dietary fibre. It's a new crop in Kenya whose potential has not been utilized fully due to abiotic and biotic stresses that limit its productivity. The crop is affected mainly by Ascochyta blight (AB) which is widespread in cool dry highlands causing up to 100% yield loss. The objective of this study was to evaluate the resistance of selected chickpea genotypes to AB in dry highlands of Kenya. The study was done in 2 sites (Egerton University-Njoro) and (Agricultural Training centre-ATC-Koibatek) for one season during long rains of 2010/2011 growing season. Thirty six genotypes from reference sets and mini-core samples introduced from ICR-SAT were evaluated. There were significant (P1200 Kg ha-1. The findings of the study showed that chickpea should be sown during the short rains (summer) in the dry highlands of Kenya when conditions are drier and warmer and less favorable for AB infection. However yield could be increased by shifting the sowing date from dry season to long rain (winter) thus avoiding terminal drought if AB resistant cultivars with acceptable agronomic traits could be identifie
    corecore