79 research outputs found

    Functionally dissociating ventro-dorsal components within the rostro-caudal hierarchical organization of the human prefrontal cortex

    Get PDF
    This work was supported by a grant of the BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG, grant number EXC 1086).Peer reviewedPostprin

    Set-shifting as a component process of goal-directed problem-solving

    Get PDF
    In two experiments, we compared secondary task interference on Tower of London performance resulting from three different secondary tasks. The secondary tasks were designed to tap three different executive functions, namely set-shifting, memory monitoring and updating, and response inhibition. Previous work using individual differences methodology suggests that, all other things being equal, the response inhibition or memory tasks should result in the greatest interference. However, this was not found to be the case. Rather, in both experiments the set-shifting task resulted in significantly more interference on Tower of London performance than either of the other secondary tasks. Subsequent analyses suggest that the degree of interference could not be attributed to differences in secondary task difficulty. Results are interpreted in the light of related work which suggests that solving problems with non-transparent goal/subgoal structure requires flexible shifting between subgoals – a process that is held to be impaired by concurrent performance of a set-shifting task

    Evolution of the nucleus

    Get PDF
    Under a Creative Commons license.The nucleus represents a major evolutionary transition. As a consequence of separating translation from transcription many new functions arose, which likely contributed to the remarkable success of eukaryotic cells. Here we will consider what has recently emerged on the evolutionary histories of several key aspects of nuclear biology; the nuclear pore complex, the lamina, centrosomes and evidence for prokaryotic origins of relevant players.Work in our laboratories was supported by the following agencies, and which is gratefully acknowledged; MRC and Wellcome Trust (MR/K008749/1 and 090007/Z/09/Z respectively, to MCF), C2A Junta de Andalucia to DPD and DFG GR1642/4-1 to RG.Open Access funded by Wellcome Trust.Peer Reviewe

    The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI) has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD) signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke.</p> <p>This study investigated whether any impairment of cerebral hemodynamics that occurs during the acute and the subacute phases of ischemic stroke is related to changes in BOLD response.</p> <p>We enrolled six aphasic patients affected by acute stroke. All patients underwent a Transcranial Doppler to assess cerebral autoregulation (Mx index) and fMRI to evaluate the amplitude and the peak latency (time to peak-TTP) of BOLD response in the acute (i.e., within four days of stroke occurrence) and the subacute (i.e., between five and twelve days after stroke onset) stroke phases.</p> <p>Results</p> <p>As patients advanced from the acute to subacute stroke phase, the affected hemisphere presented a BOLD TTP increase (p = 0.04) and a deterioration of cerebral autoregulation (Mx index increase, p = 0.046). A similar but not significant trend was observed also in the unaffected hemisphere. When the two hemispheres were grouped together, BOLD TTP delay was significantly related to worsening cerebral autoregulation (Mx index increase) (Spearman's rho = 0.734; p = 0.01).</p> <p>Conclusions</p> <p>The hemodynamic response function subtending BOLD signal may present a delay in peak latency that arises as patients advance from the acute to the subacute stroke phase. This delay is related to the deterioration of cerebral hemodynamics. These findings suggest that remodeling the fMRI hemodynamic response function in the different phases of stroke may optimize the detection of BOLD signal changes.</p

    Detection of motor changes in huntington's disease using dynamic causal modeling

    Get PDF
    Deficits in motor functioning are one of the hallmarks of Huntington's disease (HD), a genetically caused neurodegenerative disorder. We applied functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes that occur with disease progression in the neural circuitry of key areas associated with executive and cognitive aspects of motor control. Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward's method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters that also differed significantly between these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity

    Attentional Performance, Age and Scholastic Achievement in Healthy Children

    Get PDF
    Attentional processes in children play a critical role in daily school demands and accomplishments. Studies on the association of attentional processes with school achievement and age in healthy school children are scarce. The aim of the present study was to identify correlations between dimensions of attentional performance, scholastic achievement and age.An extensive testing battery was used to assess a wide range of attentional dimensions. A principal component analysis revealed three factors that are related to attentional performance (distractibility, lapses of attention, cognitive speed). Age was negatively associated with distractibility, lapses of attention and cognitive speed, indicating that distractibility and lapses of attention decreased with age in healthy children and resulted in lower cognitive speed.Attentional processes in healthy children should be measured in relation to distractibility, lapses of attention and cognitive speed

    Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling

    Get PDF
    A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ∼90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division

    Hysteresis effects in organic matter turnover in a tropical floodplain during a flood cycle

    Full text link
    Tropical inland waters are increasingly recognized for their role in the global carbon cycle, but uncertainty about the effects of such systems on the transported organic matter remains. The seasonal interactions between river, floodplain, and vegetation result in highly dynamic systems, which can exhibit markedly different biogeochemical patterns throughout a flood cycle. In this study, we determined rates and governing processes of organic matter turnover. Multi-probes in the Barotse Plains, a pristine floodplain in the Upper Zambezi River (Zambia), provided a high-resolution data set over the course of a hydrological cycle. The concentrations of oxygen, carbon dioxide, dissolved organic carbon, and suspended particulate matter in the main channel showed clear hysteresis trends with expanding and receding water on the floodplain. Lower oxygen and suspended matter concentrations prevailed at longer travel times of water in the floodplain, while carbon dioxide and dissolved organic carbon concentrations were higher when the water spent more time on the floodplain. Maxima of particulate loads occurred before highest water levels, whereas the maximum in dissolved organic carbon load occurred during the transition of flooding and flood recession. Degradation of terrestrial organic matter occurred mainly on the floodplain at increased floodplain residence times. Our data suggest that floodplains become more intense hotspots at prolonged travel time of the flood pulse over the floodplain.ISSN:0168-2563ISSN:1573-515

    Dysregulation of specialized delay/interference-dependent working memory following loss of dysbindin-1A in schizophrenia-related phenotypes

    Get PDF
    Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A -/-, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A -/-showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A -/-provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects
    corecore