4 research outputs found

    Imaging of RNA in situ hybridization by atomic force microscopy

    Get PDF
    In this study we investigated the possibility of imaging internal cellular molecules after cytochemical detection with atomic force microscopy (AFM). To this end, rat 9G and HeLa cells were hybridized with haptenized probes for 28S ribosomal RNA, human elongation factor mRNA and cytomegalovirus immediate early antigen mRNA. The haptenized hybrids were subsequently detected with a peroxidase-labelled antibody and visualized with 3,3'-diaminobenzidine (DAB). The influence of various scanning conditions on cell morphology and visibility of the signal was investigated. In order to determine the influence of ethanol dehydration on cellular structure and visibility of the DAB precipitate, cells were kept in phosphate-buffered saline (PBS) and scanned under fluid after DAB development or dehydrated and subsequently scanned dry or submerged in PBS. Direct information on the increase in height of cellular structures because of internally precipitated DAB and the height of mock-hybridized cells was available. Results show that internal DAB precipitate can be detected by AFM, with the highest sensitivity in the case of dry cells. Although a relatively large amount of DAB had to be precipitated inside the cell before it was visible by AFM, the resolution of AFM for imaging of RNA–in situ hybridization signals was slightly better than that of conventional optical microscopy. Furthermore, it is concluded that dehydration of the cells has irreversible effects on cellular structure. Therefore, scanning under fluid of previously dehydrated samples cannot be considered as a good representation of the situation before dehydration.\ud \u

    Comparative atomic force and scanning electron microscopy: an investigation on fenestrated endothelial cells in vitro

    Get PDF
    Rat liver sinusoidal endothelial cells (LEC) contain fenestrae, which are clustered in sieve plates. Fenestrae control the exchange of fluids, solutes and particles between the sinusoidal blood and the space of Disse, which at its back side is flanked by the microvillous surface of the parenchymal cells. The surface of LEC can optimally be imaged by scanning electron microscopy (SEM), and SEM images can be used to study dynamic changes in fenestrae by comparing fixed specimens subjected to different experimental conditions. Unfortunately, the SEM allows only investigation of fixed, dried and coated specimens. Recently, the use of atomic force microscopy (AFM) was introduced for analysing the cell surface, independent of complicated preparation techniques. We used the AFM for the investigation of cultured LEC surfaces and the study of morphological changes of fenestrae. SEM served as a conventional reference.\ud \ud AFM images of LEC show structures that correlate well with SEM images. Dried-coated, dried-uncoated and wet-fixed LEC show a central bulging nucleus and flat fenestrated cellular processes. It was also possible to obtain height information which is not available in SEM. After treatment with ethanol or serotonin the diameters of fenestrae increased (+6%) and decreased (−15%), respectively. The same alterations of fenestrae could be distinguished by measuring AFM images of dried-coated, dried-uncoated and wet-fixed LEC. Comparison of dried-coated (SEM) and wet-fixed (AFM) fenestrae indicated a mean shrinkage of 20% in SEM preparations. In conclusion, high-resolution imaging with AFM of the cell surface of cultured LEC can be performed on dried-coated, dried-uncoated and wet-fixed LEC, which was hitherto only possible with fixed, dried and coated preparations in SEM and transmission electron microscopy (TEM).\u

    Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    Get PDF
    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single chromosome with an unprecedented resolution. Three nucleic acid probes are used: pUC1.77, p1-79 and the plasmid probe alpha-spectrin. The hybridization signals are very well resolved in the near-field fluorescence images, while the exact location of the probes can be correlated accurately with the chromosome topography as afforded by the shear force image

    Biological applications of near-field scanning optical microscopy

    Get PDF
    Near-field Scanning Optical Microscopy (NSOM) is a true optical microscopic technique allowing fluorescence, absorption, reflection and polarization contrast with the additional advantage of nanometer lateral resolution, unlimited by diffraction and operation at ambient conditions. NSOM based on metal coated adiabatically tapered fibers, combined with shear force feedback and operated in illumination mode, has proven to be the most powerful NSOM arrangement, because of its true localization of the optical interaction, its various optical contrast possibilities and its sensitivity down to the single molecular level. In this paper applications of `aperture' NSOM to Fluorescence In Situ Hybridization of human metaphase chromosomes are presented, where the localized fluorescence allows to identify specific DNA sequences. All images are accompanied by the simultaneously acquired force image, enabling direct comparison of the optical contrast with the sample topography on nanometer scale, far beyond the diffraction limit. Thus the unique combination of high resolution, specific optical contrast and ambient operation offers many new direction possibilities in biological studies
    corecore