6 research outputs found

    Evidence of topological superconductivity in planar Josephson junctions

    Full text link
    Majorana zero modes are quasiparticle states localized at the boundaries of topological superconductors that are expected to be ideal building blocks for fault-tolerant quantum computing. Several observations of zero-bias conductance peaks measured in tunneling spectroscopy above a critical magnetic field have been reported as experimental indications of Majorana zero modes in superconductor/semiconductor nanowires. On the other hand, two dimensional systems offer the alternative approach to confine Ma jorana channels within planar Josephson junctions, in which the phase difference {\phi} between the superconducting leads represents an additional tuning knob predicted to drive the system into the topological phase at lower magnetic fields. Here, we report the observation of phase-dependent zero-bias conductance peaks measured by tunneling spectroscopy at the end of Josephson junctions realized on a InAs/Al heterostructure. Biasing the junction to {\phi} ~ {\pi} significantly reduces the critical field at which the zero-bias peak appears, with respect to {\phi} = 0. The phase and magnetic field dependence of the zero-energy states is consistent with a model of Majorana zero modes in finite-size Josephson junctions. Besides providing experimental evidence of phase-tuned topological superconductivity, our devices are compatible with superconducting quantum electrodynamics architectures and scalable to complex geometries needed for topological quantum computing.Comment: main text and extended dat

    Interferometric Single-Shot Parity Measurement in an InAs-Al Hybrid Device

    Full text link
    The fusion of non-Abelian anyons or topological defects is a fundamental operation in measurement-only topological quantum computation. In topological superconductors, this operation amounts to a determination of the shared fermion parity of Majorana zero modes. As a step towards this, we implement a single-shot interferometric measurement of fermion parity in indium arsenide-aluminum heterostructures with a gate-defined nanowire. The interferometer is formed by tunnel-coupling the proximitized nanowire to quantum dots. The nanowire causes a state-dependent shift of these quantum dots' quantum capacitance of up to 1 fF. Our quantum capacitance measurements show flux h/2e-periodic bimodality with a signal-to-noise ratio of 1 in 3.7 μ\mus at optimal flux values. From the time traces of the quantum capacitance measurements, we extract a dwell time in the two associated states that is longer than 1 ms at in-plane magnetic fields of approximately 2 T. These results are consistent with a measurement of the fermion parity encoded in a pair of Majorana zero modes that are separated by approximately 3 μ\mum and subjected to a low rate of poisoning by non-equilibrium quasiparticles. The large capacitance shift and long poisoning time enable a parity measurement error probability of 1%.Comment: Added data on a second measurement of device A and a measurement of device B, expanded discussion of a trivial scenario. Refs added, author list update

    Volume control associated with better cardiac function in long-term peritoneal dialysis patients

    No full text
    WOS: 000235412200012PubMed ID: 16538880Background: This study was undertaken to investigate the effect of tong-term blood pressure (BP) reduction, achieved with salt restriction and strict volume control, on frequency and regression of left ventricular hypertrophy (LVH) in tong-term peritoneal dialysis (PD) patients. Methods: 56 patients who had been treated for more than 2 years under our care were enrolled. After echocardiographic (Echo) evaluation, 46 patients were included in the follow-up study. In our unit, we aim to keep patients' BP below 130/85 mmHg and cardiothoracic index below 0.50. To reach these targets, moderate salt restriction is advised, and if necessary, hypertonic PD solutions are used. Echo was performed at the beginning of the study (after a mean period of 36 months on PD) and at the end of the prospective follow-up period (24 months later). Results: At the time of the first Echo, LVH was detected in only 8 (21%) patients. Residual urine volume was significantly decreased compared to data taken when they first started PO (658 +/- 795 vs 236 +/- 307 mL/day). Mean Left ventricular mass index (LVMI) was 107 +/- 26.5 g/m(2). LVMI was significantly decreased at the end of the follow-up in patients who had LVH at baseline. No LVH developed in patients who had normal LVMI at baseline. Conclusion: Our results indicate that control of hypertension is possible when extracellular fluid volume is kept under control using hypertonic PD solutions in case of recruitment in addition to salt restriction in Long-term PD patients. Sustained normovolemia is associated with tow incidence and regression of LVH

    InAs-Al Hybrid Devices Passing the Topological Gap Protocol

    Full text link
    We present measurements and simulations of semiconductor-superconductor heterostructure devices that are consistent with the observation of topological superconductivity and Majorana zero modes. The devices are fabricated from high-mobility two-dimensional electron gases in which quasi-one-dimensional wires are defined by electrostatic gates. These devices enable measurements of local and non-local transport properties and have been optimized via extensive simulations for robustness against non-uniformity and disorder. Our main result is that several devices, fabricated according to the design's engineering specifications, have passed the topological gap protocol defined in Pikulin {\it et al.}\ [arXiv:2103.12217]. This protocol is a stringent test composed of a sequence of three-terminal local and non-local transport measurements performed while varying the magnetic field, semiconductor electron density, and junction transparencies. Passing the protocol indicates a high probability of detection of a topological phase hosting Majorana zero modes. Our experimental results are consistent with a quantum phase transition into a topological superconducting phase that extends over several hundred millitesla in magnetic field and several millivolts in gate voltage, corresponding to approximately one hundred micro-electron-volts in Zeeman energy and chemical potential in the semiconducting wire. These regions feature a closing and re-opening of the bulk gap, with simultaneous zero-bias conductance peaks at {\it both} ends of the devices that withstand changes in the junction transparencies. The measured maximum topological gaps in our devices are 20-30μ30\,\mueV. This demonstration is a prerequisite for experiments involving fusion and braiding of Majorana zero modes.Comment: Fixed typos. Fig. 3 is now readable by Adobe Reade
    corecore