490 research outputs found
Early impact analysis of remote vital sign monitoring after esophagectomy: a multi-method study design
Background: Esophagectomy is associated with serious postoperative complications in 20-40% of the patients. Early recognition and treatment of these complications is critical to prevent secondary damage. To support medical professionals in the timely detection of clinical deterioration in patients admitted to the ward, it is of interest to use wireless sensor technologies allowing unobtrusive continuous vital sign tracking. However, it is yet unclear under which circumstances and to what extent telemonitoring provides beneficial effects in this patient population. Methods: We designed a multi-methods and multicenter study to evaluate the expected effects of continuous vital sign monitoring in the postoperative ward trajectory of patients undergoing esophagectomy. Semi-structured interviews with nurses and surgeons are conducted to elicit the probability of earlier detection and treatment of postoperative complications and the effects on related clinical outcome measures (mortality, ICU readmissions, and hospital stay length). To support valid estimations, interviews include scenario’s incorporating the characteristics and outcomes from center-specific patient population. Decision tree analysis is performed to assess the relation between clinical outcome for current situation and the conceived situation with continuous ward monitoring. Findings: We expect that the proposed study will provide insight in the clinical effects of continuous remote vital sign monitoring in the postoperative ward in patients undergoing esophagectomy. Discussion: Decision tree analysis combined with expert elicitation enables assessment of the afferent (i.e. monitoring) and efferent (i.e. response chain) arm of telemonitoring, and facilitates impact analysis in an early stage. The results of this study can be used to optimize the strategy of vital sign monitoring in wards, and to target situations where improvement in patient outcome and safety is expected
Научно-технический прогресс или безопасность человечества
Постепенное развитие общественного производства, его постоянное совершенствование являются фундаментальными закономерностями экономической жизни человечества. Они основываются на прогрессе науки и техники. Научно-технический прогресс за тысячелетия человеческой цивилизации прошел сложный и противоречивый путь развития. Это было вызвано тем, что именно технический прогресс, который осуществлялся на первых этапах развития общества, осуществлялся отдельно от научного прогресса до конца XVIII - начала XIX в. И только в период промышленной революции началось быстрое сближение научного и технического прогресса и возник целостный научно-технический прогресс.Gradual development of social production, its constant improvement of the fundamental laws of the economic life of mankind. They are based on the progress of science and technology. Scientific and technological progress for the millennium of human civilization has passed a complex and contradictory path of development. This was due to the fact that it was the technical progress that was carried out at the first stages of the development of society that was carried out separately from scientific progress until the end of the eighteenth and early nineteenth centuries. And only in the period of the industrial revolution did the rapid rapprochement of scientific and technological progress and the emergence of integral scientific and technological progress began
Additive technology of obtaining products from ceramics
Created an original design of the device, which lets you create samples of thermoplastic ceramic slurry, which after sintering, are obtained ceramics with high strength and hardness parameters
Postoperative urinary retention:Risk factors, bladder filling rate and time to catheterization: an observational study as part of a randomized controlled trial
Background: Knowledge of risk factors for postoperative urinary retention may guide appropriate and timely urinary catheterization. We aimed to determine independent risk factors for postoperative urinary catheterization in general surgical patients. In addition, we calculated bladder filling rate and assessed the time to spontaneous voiding or catheterization. We used the patients previously determined individual maximum bladder capacity as threshold for urinary catheterization.Methods: Risk factors for urinary catheterization were prospectively determined in 936 general surgical patients. Patients were at least 18 years of age and operated under general or spinal anesthesia without the need for an indwelling urinary catheter. Patients measured their maximum bladder capacity preoperatively at home, by voiding in a calibrated bowl after a strong urge that could no longer be ignored. Postoperatively, bladder volumes were assessed hourly with ultrasound. When patients reached their maximum bladder capacity and were unable to void, they were catheterized by the nursing staff. Bladder filling rate and time to catheterization were determined.Results: Spinal anesthesia was the main independent modifiable risk factor for urinary catheterization (hyperbaric bupivacaine, relative risk 8.1, articaine RR 3.1). Unmodifiable risk factors were a maximum bladder capacity <500 mL (RR 6.7), duration of surgery >= 60 min (RR 5.5), first scanned bladder volume at the Post Anesthesia Care Unit >= 250mL (RR 2.1), and age >= 60 years (RR 2.0). Urine production varied from 100 to 200 mL/h. Catheterization or spontaneous voiding took place approximately 4 h postoperatively.Conclusion: Spinal anesthesia, longer surgery time, and older age are the main risk factors for urinary retention catheterization. Awareness of these risk factors, regularly bladder volume scanning (at least every 3 h) and using the individual maximum bladder capacity as volume threshold for urinary catheterization may avoid unnecessary urinary catheterization and will prevent bladder overdistention with the attendant risk of lower urinary tract injury.</p
Early Warning Scores to Support Continuous Wireless Vital Sign Monitoring for Complication Prediction in Patients on Surgical Wards:Retrospective Observational Study
Background: Wireless vital sign sensors are increasingly being used to monitor patients on surgical wards. Although early warning scores (EWSs) are the current standard for the identification of patient deterioration in a ward setting, their usefulness for continuous monitoring is unknown.Objective: This study aimed to explore the usability and predictive value of high-rate EWSs obtained from continuous vital sign recordings for early identification of postoperative complications and compares the performance of a sensor-based EWS alarm system with manual intermittent EWS measurements and threshold alarms applied to individual vital sign recordings (single-parameter alarms).Methods: Continuous vital sign measurements (heart rate, respiratory rate, blood oxygen saturation, and axillary temperature) collected with wireless sensors in patients on surgical wards were used for retrospective simulation of EWSs (sensor EWSs) for different time windows (1-240 min), adopting criteria similar to EWSs based on manual vital signs measurements (nurse EWSs). Hourly sensor EWS measurements were compared between patients with (event group: 14/46, 30%) and without (control group: 32/46, 70%) postoperative complications. In addition, alarms were simulated for the sensor EWSs using a range of alarm thresholds (1-9) and compared with alarms based on nurse EWSs and single-parameter alarms. Alarm performance was evaluated using the sensitivity to predict complications within 24 hours, daily alarm rate, and false discovery rate (FDR). Results: The hourly sensor EWSs of the event group (median 3.4, IQR 3.1-4.1) was significantly higher (P<.004) compared with the control group (median 2.8, IQR 2.4-3.2). The alarm sensitivity of the hourly sensor EWSs was the highest (80%-67%) for thresholds of 3 to 5, which was associated with alarm rates of 2 (FDR=85%) to 1.2 (FDR=83%) alarms per patient per day respectively. The sensitivity of sensor EWS–based alarms was higher than that of nurse EWS–based alarms (maximum=40%) but lower than that of single-parameter alarms (87%) for all thresholds. In contrast, the (false) alarm rates of sensor EWS–based alarms were higher than that of nurse EWS–based alarms (maximum=0.6 alarm/patient/d; FDR=80%) but lower than that of single-parameter alarms (2 alarms/patient/d; FDR=84%) for most thresholds. Alarm rates for sensor EWSs increased for shorter time windows, reaching 70 alarms per patient per day when calculated every minute.Conclusions: EWSs obtained using wireless vital sign sensors may contribute to the early recognition of postoperative complications in a ward setting, with higher alarm sensitivity compared with manual EWS measurements. Although hourly sensor EWSs provide fewer alarms compared with single-parameter alarms, high false alarm rates can be expected when calculated over shorter time spans. Further studies are recommended to optimize care escalation criteria for continuous monitoring of vital signs in a ward setting and to evaluate the effects on patient outcomes.</p
BRST Cohomology of N=2 Super-Yang-Mills Theory in 4D
The BRST cohomology of the N=2 supersymmetric Yang-Mills theory in four
dimensions is discussed by making use of the twisted version of the N=2
algebra. By the introduction of a set of suitable constant ghosts associated to
the generators of N=2, the quantization of the model can be done by taking into
account both gauge invariance and supersymmetry. In particular, we show how the
twisted N=2 algebra can be used to obtain in a straightforward way the relevant
cohomology classes. Moreover, we shall be able to establish a very useful
relationship between the local gauge invariant polynomial and the
complete N=2 Yang-Mills action. This important relation can be considered as
the first step towards a fully algebraic proof of the one-loop exactness of the
N=2 beta function.Comment: 22 pages, LaTeX, final version to appear in Journ. Phys.
Performance and usability of pre-operative prediction models for 30-day peri-operative mortality risk: a systematic review
Estimating pre-operative mortality risk may inform clinical decision-making for peri-operative care. However, pre-operative mortality risk prediction models are rarely implemented in routine clinical practice. High predictive accuracy and clinical usability are essential for acceptance and clinical implementation. In this systematic review, we identified and appraised prediction models for 30-day postoperative mortality in non-cardiac surgical cohorts. PubMed and Embase were searched up to December 2022 for studies investigating pre-operative prediction models for 30-day mortality. We assessed predictive performance in terms of discrimination and calibration. Risk of bias was evaluated using a tool to assess the risk of bias and applicability of prediction model studies. To further inform potential adoption, we also assessed clinical usability for selected models. In all, 15 studies evaluating 10 prediction models were included. Discrimination ranged from a c-statistic of 0.82 (MySurgeryRisk) to 0.96 (extreme gradient boosting machine learning model). Calibration was reported in only six studies. Model performance was highest for the surgical outcome risk tool (SORT) and its external validations. Clinical usability was highest for the surgical risk pre-operative assessment system. The SORT and risk quantification index also scored high on clinical usability. We found unclear or high risk of bias in the development of all models. The SORT showed the best combination of predictive performance and clinical usability and has been externally validated in several heterogeneous cohorts. To improve clinical uptake, full integration of reliable models with sufficient face validity within the electronic health record is imperative
- …