4,096 research outputs found

    Global bifurcation for the Whitham equation

    Full text link
    We prove the existence of a global bifurcation branch of 2π2\pi-periodic, smooth, traveling-wave solutions of the Whitham equation. It is shown that any subset of solutions in the global branch contains a sequence which converges uniformly to some solution of H\"older class CαC^{\alpha}, α<12\alpha < \frac{1}{2}. Bifurcation formulas are given, as well as some properties along the global bifurcation branch. In addition, a spectral scheme for computing approximations to those waves is put forward, and several numerical results along the global bifurcation branch are presented, including the presence of a turning point and a `highest', cusped wave. Both analytic and numerical results are compared to traveling-wave solutions of the KdV equation

    Interpreting and using CPDAGs with background knowledge

    Full text link
    We develop terminology and methods for working with maximally oriented partially directed acyclic graphs (maximal PDAGs). Maximal PDAGs arise from imposing restrictions on a Markov equivalence class of directed acyclic graphs, or equivalently on its graphical representation as a completed partially directed acyclic graph (CPDAG), for example when adding background knowledge about certain edge orientations. Although maximal PDAGs often arise in practice, causal methods have been mostly developed for CPDAGs. In this paper, we extend such methodology to maximal PDAGs. In particular, we develop methodology to read off possible ancestral relationships, we introduce a graphical criterion for covariate adjustment to estimate total causal effects, and we adapt the IDA and joint-IDA frameworks to estimate multi-sets of possible causal effects. We also present a simulation study that illustrates the gain in identifiability of total causal effects as the background knowledge increases. All methods are implemented in the R package pcalg.Comment: 17 pages, 6 figures, UAI 201

    Variable selection in high-dimensional linear models: partially faithful distributions and the PC-simple algorithm

    Full text link
    We consider variable selection in high-dimensional linear models where the number of covariates greatly exceeds the sample size. We introduce the new concept of partial faithfulness and use it to infer associations between the covariates and the response. Under partial faithfulness, we develop a simplified version of the PC algorithm (Spirtes et al., 2000), the PC-simple algorithm, which is computationally feasible even with thousands of covariates and provides consistent variable selection under conditions on the random design matrix that are of a different nature than coherence conditions for penalty-based approaches like the Lasso. Simulations and application to real data show that our method is competitive compared to penalty-based approaches. We provide an efficient implementation of the algorithm in the R-package pcalg.Comment: 20 pages, 3 figure
    corecore