4,096 research outputs found
Global bifurcation for the Whitham equation
We prove the existence of a global bifurcation branch of -periodic,
smooth, traveling-wave solutions of the Whitham equation. It is shown that any
subset of solutions in the global branch contains a sequence which converges
uniformly to some solution of H\"older class , . Bifurcation formulas are given, as well as some properties along
the global bifurcation branch. In addition, a spectral scheme for computing
approximations to those waves is put forward, and several numerical results
along the global bifurcation branch are presented, including the presence of a
turning point and a `highest', cusped wave. Both analytic and numerical results
are compared to traveling-wave solutions of the KdV equation
Interpreting and using CPDAGs with background knowledge
We develop terminology and methods for working with maximally oriented
partially directed acyclic graphs (maximal PDAGs). Maximal PDAGs arise from
imposing restrictions on a Markov equivalence class of directed acyclic graphs,
or equivalently on its graphical representation as a completed partially
directed acyclic graph (CPDAG), for example when adding background knowledge
about certain edge orientations. Although maximal PDAGs often arise in
practice, causal methods have been mostly developed for CPDAGs. In this paper,
we extend such methodology to maximal PDAGs. In particular, we develop
methodology to read off possible ancestral relationships, we introduce a
graphical criterion for covariate adjustment to estimate total causal effects,
and we adapt the IDA and joint-IDA frameworks to estimate multi-sets of
possible causal effects. We also present a simulation study that illustrates
the gain in identifiability of total causal effects as the background knowledge
increases. All methods are implemented in the R package pcalg.Comment: 17 pages, 6 figures, UAI 201
Variable selection in high-dimensional linear models: partially faithful distributions and the PC-simple algorithm
We consider variable selection in high-dimensional linear models where the
number of covariates greatly exceeds the sample size. We introduce the new
concept of partial faithfulness and use it to infer associations between the
covariates and the response. Under partial faithfulness, we develop a
simplified version of the PC algorithm (Spirtes et al., 2000), the PC-simple
algorithm, which is computationally feasible even with thousands of covariates
and provides consistent variable selection under conditions on the random
design matrix that are of a different nature than coherence conditions for
penalty-based approaches like the Lasso. Simulations and application to real
data show that our method is competitive compared to penalty-based approaches.
We provide an efficient implementation of the algorithm in the R-package pcalg.Comment: 20 pages, 3 figure
- …
