22 research outputs found

    Forgetting Private Textual Sequences in Language Models via Leave-One-Out Ensemble

    Full text link
    Recent research has shown that language models have a tendency to memorize rare or unique token sequences in the training corpus. After deploying a model, practitioners might be asked to delete any personal information from the model by individuals' requests. Re-training the underlying model every time individuals would like to practice their rights to be forgotten is computationally expensive. We employ a teacher-student framework and propose a novel leave-one-out ensemble method to unlearn the targeted textual sequences that need to be forgotten from the model. In our approach, multiple teachers are trained on disjoint sets; for each targeted sequence to be removed, we exclude the teacher trained on the set containing this sequence and aggregate the predictions from remaining teachers to provide supervision during fine-tuning. Experiments on LibriSpeech and WikiText-103 datasets show that the proposed method achieves superior privacy-utility trade-offs than other counterparts

    Learning a Dual-Mode Speech Recognition Model via Self-Pruning

    Full text link
    There is growing interest in unifying the streaming and full-context automatic speech recognition (ASR) networks into a single end-to-end ASR model to simplify the model training and deployment for both use cases. While in real-world ASR applications, the streaming ASR models typically operate under more storage and computational constraints - e.g., on embedded devices - than any server-side full-context models. Motivated by the recent progress in Omni-sparsity supernet training, where multiple subnetworks are jointly optimized in one single model, this work aims to jointly learn a compact sparse on-device streaming ASR model, and a large dense server non-streaming model, in a single supernet. Next, we present that, performing supernet training on both wav2vec 2.0 self-supervised learning and supervised ASR fine-tuning can not only substantially improve the large non-streaming model as shown in prior works, and also be able to improve the compact sparse streaming model.Comment: 7 pages, 1 figure. Accepted for publication at IEEE Spoken Language Technology Workshop (SLT), 202

    Contextual Biasing of Named-Entities with Large Language Models

    Full text link
    This paper studies contextual biasing with Large Language Models (LLMs), where during second-pass rescoring additional contextual information is provided to a LLM to boost Automatic Speech Recognition (ASR) performance. We propose to leverage prompts for a LLM without fine tuning during rescoring which incorporate a biasing list and few-shot examples to serve as additional information when calculating the score for the hypothesis. In addition to few-shot prompt learning, we propose multi-task training of the LLM to predict both the entity class and the next token. To improve the efficiency for contextual biasing and to avoid exceeding LLMs' maximum sequence lengths, we propose dynamic prompting, where we select the most likely class using the class tag prediction, and only use entities in this class as contexts for next token prediction. Word Error Rate (WER) evaluation is performed on i) an internal calling, messaging, and dictation dataset, and ii) the SLUE-Voxpopuli dataset. Results indicate that biasing lists and few-shot examples can achieve 17.8% and 9.6% relative improvement compared to first pass ASR, and that multi-task training and dynamic prompting can achieve 20.0% and 11.3% relative WER improvement, respectively.Comment: 5 pages, 4 figures. Conference: ICASSP 202

    Modality Confidence Aware Training for Robust End-to-End Spoken Language Understanding

    Full text link
    End-to-end (E2E) spoken language understanding (SLU) systems that generate a semantic parse from speech have become more promising recently. This approach uses a single model that utilizes audio and text representations from pre-trained speech recognition models (ASR), and outperforms traditional pipeline SLU systems in on-device streaming scenarios. However, E2E SLU systems still show weakness when text representation quality is low due to ASR transcription errors. To overcome this issue, we propose a novel E2E SLU system that enhances robustness to ASR errors by fusing audio and text representations based on the estimated modality confidence of ASR hypotheses. We introduce two novel techniques: 1) an effective method to encode the quality of ASR hypotheses and 2) an effective approach to integrate them into E2E SLU models. We show accuracy improvements on STOP dataset and share the analysis to demonstrate the effectiveness of our approach.Comment: INTERSPEECH 202

    Learning ASR pathways: A sparse multilingual ASR model

    Full text link
    Neural network pruning compresses automatic speech recognition (ASR) models effectively. However, in multilingual ASR, language-agnostic pruning may lead to severe performance drops on some languages because language-agnostic pruning masks may not fit all languages and discard important language-specific parameters. In this work, we present ASR pathways, a sparse multilingual ASR model that activates language-specific sub-networks ("pathways"), such that the parameters for each language are learned explicitly. With the overlapping sub-networks, the shared parameters can also enable knowledge transfer for lower-resource languages via joint multilingual training. We propose a novel algorithm to learn ASR pathways, and evaluate the proposed method on 4 languages with a streaming RNN-T model. Our proposed ASR pathways outperform both dense models and a language-agnostically pruned model, and provide better performance on low-resource languages compared to the monolingual sparse models.Comment: Accepted by ICASSP 202

    End-to-End Speech Recognition Contextualization with Large Language Models

    Full text link
    In recent years, Large Language Models (LLMs) have garnered significant attention from the research community due to their exceptional performance and generalization capabilities. In this paper, we introduce a novel method for contextualizing speech recognition models incorporating LLMs. Our approach casts speech recognition as a mixed-modal language modeling task based on a pretrained LLM. We provide audio features, along with optional text tokens for context, to train the system to complete transcriptions in a decoder-only fashion. As a result, the system is implicitly incentivized to learn how to leverage unstructured contextual information during training. Our empirical results demonstrate a significant improvement in performance, with a 6% WER reduction when additional textual context is provided. Moreover, we find that our method performs competitively and improve by 7.5% WER overall and 17% WER on rare words against a baseline contextualized RNN-T system that has been trained on more than twenty five times larger speech dataset. Overall, we demonstrate that by only adding a handful number of trainable parameters via adapters, we can unlock contextualized speech recognition capability for the pretrained LLM while keeping the same text-only input functionality

    Towards Selection of Text-to-speech Data to Augment ASR Training

    Full text link
    This paper presents a method for selecting appropriate synthetic speech samples from a given large text-to-speech (TTS) dataset as supplementary training data for an automatic speech recognition (ASR) model. We trained a neural network, which can be optimised using cross-entropy loss or Arcface loss, to measure the similarity of a synthetic data to real speech. We found that incorporating synthetic samples with considerable dissimilarity to real speech, owing in part to lexical differences, into ASR training is crucial for boosting recognition performance. Experimental results on Librispeech test sets indicate that, in order to maintain the same speech recognition accuracy as when using all TTS data, our proposed solution can reduce the size of the TTS data down below its 30%30\,\%, which is superior to several baseline methods

    Anchored Speech Recognition with Neural Transducers

    Full text link
    Neural transducers have achieved human level performance on standard speech recognition benchmarks. However, their performance significantly degrades in the presence of cross-talk, especially when the primary speaker has a low signal-to-noise ratio. Anchored speech recognition refers to a class of methods that use information from an anchor segment (e.g., wake-words) to recognize device-directed speech while ignoring interfering background speech. In this paper, we investigate anchored speech recognition to make neural transducers robust to background speech. We extract context information from the anchor segment with a tiny auxiliary network, and use encoder biasing and joiner gating to guide the transducer towards the target speech. Moreover, to improve the robustness of context embedding extraction, we propose auxiliary training objectives to disentangle lexical content from speaking style. We evaluate our methods on synthetic LibriSpeech-based mixtures comprising several SNR and overlap conditions; they improve relative word error rates by 19.6% over a strong baseline, when averaged over all conditions.Comment: To appear at IEEE ICASSP 202
    corecore