4 research outputs found
Stable Electromyographic Sequence Prediction During Movement Transitions using Temporal Convolutional Networks
Transient muscle movements influence the temporal structure of myoelectric
signal patterns, often leading to unstable prediction behavior from
movement-pattern classification methods. We show that temporal convolutional
network sequential models leverage the myoelectric signal's history to discover
contextual temporal features that aid in correctly predicting movement
intentions, especially during interclass transitions. We demonstrate
myoelectric classification using temporal convolutional networks to effect 3
simultaneous hand and wrist degrees-of-freedom in an experiment involving nine
human-subjects. Temporal convolutional networks yield significant
performance improvements over other state-of-the-art methods in terms of both
classification accuracy and stability.Comment: 4 pages, 5 figures, accepted for Neural Engineering (NER) 2019
Conferenc