21 research outputs found

    Third Yearly Activity Report

    Get PDF
    The calculation work performed during the 3rd project year in WP2 as well as the R&D activities carried out in WP3, WP4 and WP5 are described in this report. In addition, the work dedicated to the project management (WP1) as well as to WP6 regarding the dissemination/communication activities and the education/training program (e.g. the follow-up of the mobility program between different organizations in the consortium, training on simulation tools and activities accomplished by PhD/post-doctoral students) is also reported

    Main outcomes of the Phebus FPT1 uncertainty and sensitivity analysis in the EU-MUSA project

    Get PDF
    The Management and Uncertainties of Severe Accidents (MUSA) project was funded in HORIZON 2020 and is coordinated by CIEMAT (Spain). The project aims at consolidating a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) analysis, focusing on source term figures of merit. The Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), was devoted to apply and test UQ methodologies adopting the internationally recognized PHEBUS FPT1 test. FPT1 was chosen to test UQ methodologies because, even though it is a simplified SA scenario, it was representative of the in-vessel phase of a severe accident initiated by a break in the cold leg of a PWR primary circuit. WP4 served as a platform to identify and discuss the issues encountered in the application of UQ methodol ogies to SA analyses (e.g. discuss the UQ methodology, perform the coupling between the SA codes and the UQ tools, define the results post-processing methods, etc.). The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise with the related specifications and the methodologies used by the partners to perform the UQ exercise. The main outcomes and lessons learned of the analysis are: scripting was in general needed for the SA code and uncertainty tool coupling and to have more flexibility; particular attention should be devoted to the proper choice of the input uncertain parameters; outlier values of figures of merit should be carefully analyzed; the computational time is a key element to perform UQ in SA; the large number of uncertain input parameters may complicate the interpretation of correlation or sensitivity analysis; there is the need for a statistically solid handling of failed calculations

    First outcomes from the PHEBUS FPT1 uncertainty application done in the EU MUSA project

    Get PDF
    The Management and Uncertainties of Severe Accidents (MUSA) project, founded in HORIZON 2020 and coordinated by CIEMAT (Spain), aims to consolidate a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) by focusing on Source Term (ST) Figure of Merits (FOM). In this framework, among the 7 MUSA WPs the Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), looked at applying and testing UQ methodologies, against the internationally recognized PHEBUS FPT1 test. Considering that FPT1 is a simplified but representative SA scenario, the main target of the WP4 is to train project partners to perform UQ for SA analyses. WP4 is also a collaborative platform for highlighting and discussing results and issues arising from the application of UQ methodologies, already used for design basis accidents, and in MUSA for SA analyses. As a consequence, WP4 application creates the technical background useful for the full plant and spent fuel pool applications planned along the MUSA project, and it also gives a first contribution for MUSA best practices and lessons learned. 16 partners from different world regions are involved in the WP4 activities. The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise, the methodologies used by the partners to perform the UQ exercise, and the first insights coming out from the calculation phase

    Trends of European research and development in district heating technologies

    Get PDF
    There is a considerable diversity of district heating (DH) technologies, components and interaction in EU countries. The trends and developments of DH are investigated in this paper. Research of four areas related to DH systems and their interaction with: fossil fuels, renewable energy (RE) sources, energy efficiency of the systems and the impact on the environment and the human health are described in the following content. The key conclusion obtained from this review is that the DH development requires more flexible energy systems with building automations, more significant contribution of RE sources, more dynamic prosumers׳ participation, and integration with mix fuel energy systems, as part of smart energy sustainable systems in smart cities. These are the main issues that Europe has to address in order to establish sustainable DH systems across its countries.This research was conducted in collaboration between Wrocław University of Technology (Poland) and Brunel University London (UK). The support for the Polish team was by the Ministry of Science and HigherEducationunderGrantno.50532

    What is the future for nuclear fission technology? A technical opinion from the Guest Editors of VSI NFT series and the Editor of the Journal Nuclear Engineering and Design

    Get PDF
    The Nuclear Fission Technology (NFT) series of Virtual Special Issues (VSIs) for the Journal Nuclear Engineering and Design (J NED) was proposed in 2023, including the request to potential authors of manuscript to address the following questions: o For how long will (water-cooling based) large size nuclear reactor survive? o Will water-technology based SMRs displace large reactors? o Will non-water-cooling technology SMRs and micro-reactors have an industrial deployment? o Will breeding technology, including thorium exploitation, have due relevance? o Will ‘nuclear infrastructure’ (fuel supply, financial framework, competence by regulators for new designs, waste management, etc.) remain or be sufficiently robust? Several dozen Guest Editors (GEs), i.e., the authors of the present document, managed the activity together with the Editor-in-Chief (EiC) of the journal. More than one thousand scientists contributed 470+ manuscripts, not evenly distributed among the geographical regions of the world and not necessarily addressing directly the bullet-questions, but certainly providing a view of current research being done. Key conclusions are as follows: (a) Large size reactors are necessary for a sustainable and safe exploitation of nuclear fission technology; (b) The burning of 233U (from thorium) and 239Pu (from uranium) is unavoidable, as well as recycling residual uranium currently part of waste; (c) Nuclear infrastructures in countries that currently use, or are entering the use of, fission energy for electricity production need a century planning; (d) The adoption of small reactors for commercial naval propulsion, hydrogen production and desalination is highly recommended

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Modelling of Water Ingress into Vacuum Vessel Experiments Using RELAP5 Code

    Full text link

    Thermal-Hydraulic Assessment of W7-X Plasma Vessel Venting System in Case of 40 mm In-Vessel LOCA

    Full text link
    This paper presents assessment of the capacity of W7-X venting system in response to in-vessel LOCA, rupture of 40 mm diameter pipe during operation mode “baking.” The integral analysis of the coolant release from the cooling system, pressurisation of PV, and response of the venting system is performed using RELAP5 code. The same coolant release rate was introduced to the COCOSYS code, which is a lumped-parameter code developed for analysis of processes in containment of the light water reactors and the detailed analysis of the plasma vessel and the venting system is performed. Different options of coolant release modeling available in COCOSYS are compared to define the base case model, which is further used for assessment of the other parameters, that is, the failure of one burst disk, the temperature in the environment, and the pressure losses in the piping of venting system. The performed analysis identified the best option for coolant release modeling and showed that the capacity of the W7-X venting system is enough to prevent overpressure of the plasma vessel in the case of in-vessel LOCA
    corecore