45 research outputs found

    Ubiquitinylation of α-Synuclein by Carboxyl Terminus Hsp70-Interacting Protein (CHIP) Is Regulated by Bcl-2-Associated Athanogene 5 (BAG5)

    Get PDF
    Parkinson's disease (PD) is a common neurodegenerative condition in which abnormalities in protein homeostasis, or proteostasis, may lead to accumulation of the protein α-synuclein (α-syn). Mutations within or multiplications of the gene encoding α-syn are known to cause genetic forms of PD and polymorphisms in the gene are recently established risk factors for idiopathic PD. α-syn is a major component of Lewy bodies, the intracellular proteinaceous inclusions which are pathological hallmarks of most forms of PD. Recent evidence demonstrates that α-syn can self associate into soluble oligomeric species and implicates these α-syn oligomers in cell death. We have previously shown that carboxyl terminus of Hsp70-interacting protein (CHIP), a co-chaperone molecule with E3 ubiquitin ligase activity, may reduce the levels of toxic α-syn oligomers. Here we demonstrate that α-syn is ubiquitinylated by CHIP both in vitro and in cells. We find that the products from ubiquitinylation by CHIP include both monoubiquitinylated and polyubiquitinylated forms of α-syn. We also demonstrate that CHIP and α-syn exist within a protein complex with the co-chaperone bcl-2-associated athanogene 5 (BAG5) in brain. The interaction of CHIP with BAG5 is mediated by Hsp70 which binds to the tetratricopeptide repeat domain of CHIP and the BAG domains of BAG5. The Hsp70-mediated association of BAG5 with CHIP results in inhibition of CHIP E3 ubiquitin ligase activity and subsequently reduces α-syn ubiquitinylation. Furthermore, we use a luciferase-based protein-fragment complementation assay of α-syn oligomerization to investigate regulation of α-syn oligomers by CHIP in living cells. We demonstrate that BAG5 mitigates the ability of CHIP to reduce α-syn oligomerization and that non-ubiquitinylated α-syn has an increased propensity for oligomerization. Thus, our results identify CHIP as an E3 ubiquitin ligase of α-syn and suggest a novel function for BAG5 as a modulator of CHIP E3 ubiquitin ligase activity with implications for CHIP-mediated regulation of α-syn oligomerization

    Deep-Brain Stimulation for Essential Tremor and Other Tremor Syndromes: A Narrative Review of Current Targets and Clinical Outcomes

    No full text
    Tremor is a prevalent symptom associated with multiple conditions, including essential tremor (ET), Parkinson’s disease (PD), multiple sclerosis (MS), stroke and trauma. The surgical management of tremor evolved from stereotactic lesions to deep-brain stimulation (DBS), which allowed safe and reversible interference with specific neural networks. This paper reviews the current literature on DBS for tremor, starting with a detailed discussion of current tremor targets (ventral intermediate nucleus of the thalamus (Vim), prelemniscal radiations (Raprl), caudal zona incerta (Zi), thalamus (Vo) and subthalamic nucleus (STN)) and continuing with a discussion of results obtained when performing DBS in the various aforementioned tremor syndromes. Future directions for DBS research are then briefly discussed

    Anesthesia considerations for patients with an implanted deep brain stimulator undergoing surgery: a review and update

    No full text
    10.1007/s12630-016-0794-8CANADIAN JOURNAL OF ANESTHESIA-JOURNAL CANADIEN D ANESTHESIE643308-31

    In reply: Parkinsonism-hyperthermia syndrome and deep brain stimulation

    No full text
    10.1007/s12630-017-0838-8CANADIAN JOURNAL OF ANESTHESIA-JOURNAL CANADIEN D ANESTHESIE646677-67

    Chaperone-Based Therapies for Disease Modification in Parkinson’s Disease

    No full text
    Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is characterized by the presence of pathological intracellular aggregates primarily composed of misfolded α-synuclein. This pathology implicates the molecular machinery responsible for maintaining protein homeostasis (proteostasis), including molecular chaperones, in the pathobiology of the disease. There is mounting evidence from preclinical and clinical studies that various molecular chaperones are downregulated, sequestered, depleted, or dysfunctional in PD. Current therapeutic interventions for PD are inadequate as they fail to modify disease progression by ameliorating the underlying pathology. Modulating the activity of molecular chaperones, cochaperones, and their associated pathways offers a new approach for disease modifying intervention. This review will summarize the potential of chaperone-based therapies that aim to enhance the neuroprotective activity of molecular chaperones or utilize small molecule chaperones to promote proteostasis.Peer Reviewe

    Merging DBS with viral vector or stem cell implantation: “hybrid” stereotactic surgery as an evolution in the surgical treatment of Parkinson's disease

    No full text
    Parkinson's disease (PD) is a complex neurodegenerative disorder that is currently managed using a broad array of symptom-based strategies. However, targeting its molecular origins represents the potential to discover disease-modifying therapies. Deep brain stimulation (DBS), a highly successful treatment modality for PD symptoms, addresses errant electrophysiological signaling pathways in the basal ganglia. In contrast, ongoing clinical trials testing gene and cell replacement therapies propose to protect or restore neuronal-based physiologic dopamine transmission in the striatum. Given promising new platforms to enhance target localization'such as interventional MRI-guided stereotaxy'the opportunity now exists to create hybrid therapies that combine DBS with gene therapy and/or cell implantation. In this mini-review, we discuss approaches used for central nervous system biologic delivery in PD patients in previous trials and propose a new set of strategies based on novel molecular targets. A multifaceted approach, if successful, may not only contribute to our understanding of PD pathology but could introduce a new era of disease modification

    Advances in DBS Technology and Novel Applications: Focus on Movement Disorders

    No full text
    Purpose of Review Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. Recent Findings New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection

    CHIP mediates ubiquitinylation of α-syn in cells.

    No full text
    <p>(A) Immunoprecipitations with anti-luc were performed from lysates of H4 cells transfected with HA-Ub, syn-luc1, and control vector or myc-CHIP as indicated. Immunoprecipitates were sequentially probed with anti-HA (upper) and anti-α-syn (middle) antibodies. Five percent of lysates used for immunoprecipitation was loaded as input and probed with anti-myc or anti-α-syn antibodies (lower). The middle band represents monoubiquitinylated α-syn (UB-α-syn). The asterisks (*) indicate immunoprecipitated bands that remain detectable by the anti-HA antibody following the substitution of all lysines within the α-syn sequence (see (B)). Molecular weight markers are indicated on left in kDa. (B) Immunoprecipitations with anti-luc were performed from lysates of H4 cells transfected with syn-luc1, synKR-luc1, HA-Ub, and myc-CHIP as indicated. Immunoprecipitated proteins were probed with anti-α-syn antibodies (H3C) which recognizes both syn-luc1 and synKR-luc1. The asterisks (*) correspond with the same bands indicated as such in (A). (C) Densitometric quantification of the band representing monoubiquitinylated α-syn when co-transfected with a control vector or myc-CHIP was performed from three independent experiments, one of which is represented in (A). Bars correspond to mean (± S.D.) gray value normalized to measures obtained for co-transfection of syn-luc1 and HA-Ub with control vector. *P<0.05, t-test versus control vector. (D) Proteins immunoprecipitated with anti-luc were probed with anti-α-syn antibodies (Syn-1) with a short or long exposure to film. The asterisks (*) correspond with the same bands seen in (A) and (B). (E) Immunoprecipitations with anti-α-syn were performed from lysates of H4 cells transfected with syn-luc1 and HA-Ub with control vector or myc-CHIP. Immunoprecipitated proteins were sequentially probed with anti-HA (upper) and anti-luc (lower) antibodies. The asterisks (*) correspond to the bands as indicated in (A), (B), and (D). Results are representative of three experiments.</p
    corecore