4 research outputs found

    Sex Differences in Early Programming by Maternal High Fat Diet Induced-Obesity and Fish Oil Supplementation in Mice

    No full text
    Pre-pregnancy obesity is a contributing factor for impairments in offspring metabolic health. Interventional strategies during pregnancy are a potential approach to alleviate and/or prevent obesity and obesity related metabolic alterations in the offspring. Fish oil (FO), rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) exerts metabolic health benefits. However, the role of FO in early life remains still unknown. Hence, this study objective was to determine the effect of FO supplementation in mice from pre-pregnancy through lactation, and to study the post-natal metabolic health effects in gonadal fat and liver of offspring fed high fat (HF) diet with or without FO. Female C57BL6J mice aged 4–5 weeks were fed a HF (45% fat) diet supplemented with or without FO (30 g/kg of diet) and low fat (LF; 10% fat) pre-pregnancy through lactation. After weaning, offspring (male and female) from HF or FO dams either continued the same diet (HF-HF and FO-FO) or switched to the other diet (HF-FO and FO-HF) for 13 weeks, creating four groups of treatment, and LF-LF was used as a control group. Serum, gonadal fat and liver tissue were collected at termination for metabolic analyses. Offspring of both sexes fed HF with or without fish oil gained (p < 0.05) more weight post weaning, compared to LF-LF-fed mice. All the female offspring groups supplemented with FO had reduced body weight compared to the respective male groups. Further, FO-FO supplementation in both sexes (p < 0.05) improved glucose clearance and insulin sensitivity compared to HF-HF. All FO-FO fed mice had significantly reduced adipocyte size compared to HF-HF group in both male and females. Inflammation, measured by mRNA levels of monocyte chemoattractant protein 1 (Mcp1), was reduced (p < 0.05) with FO supplementation in both sexes in gonadal fat and in the liver. Markers of fatty acid synthesis, fatty acid synthase (Fasn) showed no sex specific differences in gonadal fat and liver of mice supplemented with HF. Female mice had lower liver triglycerides than male counterparts. Supplementation of FO in mice improved metabolic health of offspring by lowering markers of lipid synthesis and inflammation

    Dietary pH Enhancement Improves Metabolic Outcomes in Diet-Induced Obese Male and Female Mice: Effects of Beef vs. Casein Proteins

    No full text
    (1) Consumption of diets that are caloric dense but not nutrient dense have been implicated in metabolic diseases, in part through low-grade metabolic acidosis. Mitigation strategies through dietary intervention to alleviate acidosis have not been previously reported. Our objective is to determine the effects of pH enhancement (with ammonia) in high fat diet-induced obese mice that were fed beef or casein as protein sources compared to low fat diet-fed mice. (2) Methods: B6 male and female mice were randomized (n = 10) into eight diets that differ in protein source, pH enhancement of the protein, and fat content, and fed for 13 weeks: low fat (11% fat) casein (LFC), LF casein pH-enhanced (LFCN), LF lean beef (LFB), LFBN, high fat (46%) casein (HFC), HFCN, HF beef (HFB), and HFBN. Body weights and composition, and glucose tolerance tests were conducted along with terminal serum analyses. Three-way ANOVA was performed. (3) Results: A significant effect of dietary fat (LF vs. HF) was observed across all variables in both sexes (final body weight, fat mass, glucose clearance, and serum leptin). Importantly, pH enhancement significantly reduced adiposity (males only) and final body weights (females only) and significantly improved glucose clearance in both sexes. Lastly, clear sex differences were observed across all variables. (4) Conclusions: Our findings demonstrate metabolic benefits of increasing dietary pH using ammonia, while high fat intake per se (not protein source) is the major contributor to metabolic dysfunctions. Additional research is warranted to determine mechanisms underlying the beneficial effects of pH enhancement, and interactions with dietary fat content and proteins

    Association between Obesity, Race or Ethnicity, and Luminal Subtypes of Breast Cancer

    No full text
    Luminal breast cancers are the most common genomic subtype of breast cancers where Luminal A cancers have a better prognosis than Luminal B. Exposure to sex steroids and inflammatory status due to obesity are key contributors of Luminal tumor development. In this study, 1928 patients with Luminal A breast cancer and 1610 patients with Luminal B breast cancer were compared based on body mass index (BMI), age, race, menopausal status, and expressed receptors (i.e., estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2)). Patients with Luminal B tumors had a significantly higher mean BMI (Δ = 0.69 kgm−2 [0.17, 1.21], p = 0.010) versus Luminal A. Interestingly, the risks of Luminal B tumors were higher among Black/African American patients versus White and Hispanic patients (p < 0.001 and p = 0.001, respectively). When controlled for each other, Black/African American race (p < 0.001) and increased BMI (p = 0.008) were associated with increased risks of Luminal B carcinoma, while postmenopausal status was associated with a decreased risk (p = 0.028). Increased BMI partially mediated the strong association between Black/African American race and the risk of Luminal B carcinoma. Thus, Black/African American race along with obesity seem to be associated with an increased risk of more aggressive Luminal B breast carcinomas

    Genetic Deletion of DNAJB3 Using CRISPR-Cas9, Produced Discordant Phenotypes

    No full text
    Several pathways and/or genes have been shown to be dysregulated in obesity-induced insulin resistance (IR) and type 2 diabetes (T2D). We previously showed, for the first time, impaired expression of DNAJB3 mRNA and protein in subjects with obesity, which was concomitant with increased metabolic stress. Restoring the normal expression of DNAJB3 attenuated metabolic stress and improved insulin signaling both in vivo and in vitro, suggesting a protective role of DNAJB3 against obesity and T2D. The precise underlying mechanisms remained, however, unclear. This study was designed to confirm the human studies in a mouse model of dietary obesity-induced insulin resistance, and, if validated, to understand the underlying mechanisms. We hypothesized that mice lacking DNAJB3 would be more prone to high-fat (HF)-diet-induced increase in body weight and body fat, inflammation, glucose intolerance and insulin resistance as compared with wild-type (WT) littermates. Three DNAJB3 knockout (KO) lines were generated (KO 30, 44 and 47), using CRISPR-Cas9. Male and female KO and WT mice were fed a HF diet (45% kcal fat) for 16 weeks. Body weight was measured biweekly, and a glucose tolerance test (GTT) and insulin tolerance test (ITT) were conducted at week 13 and 14, respectively. Body composition was determined monthly by nuclear magnetic resonance (NMR). Following euthanasia, white adipose tissue (WAT) and skeletal muscle were harvested for further analyses. Compared with WT mice, male and female KO 47 mice demonstrated higher body weight and fat mass. Similarly, KO 47 mice also showed a slower rate of glucose clearance in GTT that was consistent with decreased mRNA expression of the GLUT4 gene in WAT but not in the muscle. Both male and female KO 47 mice exhibited higher mRNA levels of the pro-inflammatory marker TNF-a in WAT only, whereas increased mRNA levels of MCP1 chemokine and the ER stress marker BiP/Grp78 were observed in male but not in female KO 47 mice. However, we did not observe the same changes in the other KO lines. Taken together, the phenotype of the DNAJB3 KO 47 mice was consistent with the metabolic changes and low levels of DNAJB3 reported in human subjects. These findings suggest that DNAJB3 may play an important role in metabolic functions and glucose homeostasis, which warrants further phenotyping and intervention studies in other KO 47 and other KO mice, as well as investigating this protein as a potential therapeutic target for obesity and T2D
    corecore