2 research outputs found

    Challenging the evolutionary strategy for synthesis of analogue computational circuits

    Get PDF
    There are very few reports in the past on applications of Evolutionary Strategy (ES) towards the synthesis of analogue circuits. Moreover, even fewer reports are on the synthesis of computational circuits. Last fact is mainly due to the dif-ficulty in designing of the complex nonlinear functions that these circuits perform. In this paper, the evolving power of the ES is challenged to design four computational circuits: cube root, cubing, square root and squaring functions. The synthesis succeeded due to the usage of oscillating length genotype strategy and the substructure reuse. The approach is characterized by its simplicity and represents one of the first attempts of application of ES towards the synthesis of “QR” circuits. The obtained experimental results significantly exceed the results published before in terms of the circuit quality, economy in components and computing resources utilized, revealing the great potential of the technique pro-posed to design large scale analog circuits

    Automated synthesis of 8-output voltage distributor using incremental evolution

    Get PDF
    The automated synthesis of the analog electronic circuit, including both the topology and the numerical values for each of the circuit’s component, is recognized as a difficult problem. This problem is aggregating considerably when the size of a circuit and the number of its input/output pins increases. In this paper for the first time the method of automated synthesis of the analog electronic circuit by mean of evolution is applied to the synthesis of a multi-output circuit, namely 8-output voltage distributor, that distributes the incoming voltage signal among the outputs in filter-like mode. Using the substructure reuse, dynamic fitness function and incremental evolution techniques the largest analogue circuit has been evolved in the area that has 138 components
    corecore