12 research outputs found

    Phase Error Scaling Law in Two-Wavelength Adaptive Optics

    Get PDF
    We derive a simple, physical, closed-form expression for the optical-path difference (OPD) of a two-wavelength adaptive-optics (AO) system. Starting from Hogge and Butts’ classic OPD variance integral expression, we apply Mellin transform techniques to obtain series and asymptotic solutions to the integral. For realistic two-wavelength AO systems, the former converges slowly and has limited utility. The latter, on the other hand, is a simple formula in terms of the separation between the AO sensing (i.e., the beacon) and compensation (or observation) wavelengths. We validate this formula by comparing it to the OPD variances obtained from the aforementioned series and direct numerical evaluation of Hogge and Butts’ integral. Our simple asymptotic expression is shown to be in excellent agreement with these exact solutions. The work presented in this letter will be useful in the design and characterization of two-wavelength AO systems

    Some aspects of LANDSAT ground receiving stations for developing countries

    No full text
    Meeting: Intergovernmental Meeting on Remote Sensing and Satellite Surveying, 7-13 June 1977, Bangkok, THPhotocop

    Shock-wave Tolerant Phase Reconstruction Algorithm for Shack–Hartmann Wavefront Sensor Data

    No full text
    We develop a phase reconstruction algorithm for the Shack–Hartmann wavefront sensor (SHWFS) that is tolerant to phase discontinuities, such as the ones imposed by shock waves. In practice, this algorithm identifies SHWFS locations where the resultant tilt information is affected by the shock and improves the tilt information in these locations using the local SHWFS observation-plane irradiance patterns. The algorithm was shown to work well over the range of conditions tested with both simulated and experimental data. In turn, the reconstruction algorithm will enable robust wavefront sensing in transonic, supersonic, and hypersonic environments

    A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    Get PDF
    Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal) reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration on Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production

    Utilizing Temporally Invariant Calibration Sites to Classify Multiple Dates and Types of Satellite Imagery

    No full text
    Mapping past time periods (retrospective mapping) using remotely sensed data is hindered by a lack of coincident calibration and validation information. The identification of features of same ground cover invariant across time and their use as calibration and validation data addresses this challenge by: (a) streamlining the process of image calibration for multiple dates, and (b) allowing each image to generate its own spectral signature. This study investigates the use of temporally invariant calibration and validation data to map land-cover in Massachusetts, employing five satellite images collected from five separate dates and different sensors. The results indicate that this technique can be used to produce land cover classifications of similar overall map accuracy to published mapping studies. Classification accuracy using this method is highly dependent on the characteristics (radiometric, spectral, and spatial) of the satellite imagery. © 2011 American Society for Photogrammetry and Remote Sensing
    corecore