707 research outputs found
Hard X-Ray flux upper limits of central compact objects in supernova remnants
We searched for hard X-ray (20–300 keV) emission from nine central compact
objects (CCOs) 1E 1207.4−5209, 1WGA J1713−3949, J082157.5−430017,
J085201.4−461753, J1601−5133, J1613483−5055, J181852.0−150213,
J185238.6+004020, and J232327.9+584843 with the INTEGRAL observatory.
We applied spectral imaging analysis and did not detect any of the sources
with luminosity upper limits in the range of 1033-1034 ergs/s in the 20-75 keV
band. For nearby CCOs (< 4 kpc) the upper limit luminosities are an order
of magnitude lower than the measured persistent hard X-ray luminosities of
AXPs. This may indicate that the central compact objects are low magnetic
field systems with fallback disks around them
The rise and fall of the compact jet in GRO J1655-40
In this work, we present some preliminary results on a multi-wavelength (radio/infrared/optical/X-ray) study of GRO J1655-40 during its 2005 outburst. We focus on the broadband spectral energy distribution during the different stages of the outburst. In particular, using this unprecedented coverage, and especially thanks to the new constraints given in the mid-IR by Spitzer, we can test the physical self-consistent disk-jet model during the hard state, where the source shows radio emission from a compact jet. The hard state broadband spectra of the observations during the decay of the outburst, are fairly well fit using the jet model with parameters overall similar to those found for Cyg X-1 and GX 339-4 in a previous work. However, we find that, compared to the other two BHs, GRO J1655-40 has a much higher jet power (at least a factor of 3), and that, most notably, the model seems to underestimate the radio emissio
Investigation of charge sharing among electrode strips for a CdZnTe detector
We have investigated charge sharing among the anode strips of a CdZnTe (CZT)
detector using a 30 micrometer collimated gamma-ray beam. We compared the
laboratory measurements with the predictions from our modeling of the charge
transport within the detector. The results indicate that charge sharing is a
function of the interaction depth and the energy of the incoming photon. Also,
depending on depth, a fraction of the electrons might drift to the inter-anode
region causing incomplete charge collection. Here, we show that photoelectron
range and diffusion of the charge cloud are the principal causes of charge
sharing and obtain limits on the size of the electron cloud as a function of
position in the detector.Comment: 16 pages 10 figures. Accepted for publication in Nuclear Instruments
and Methods -
State transitions and jet formation in black hole binaries
The daily monitoring observations of black hole transients with RXTE provided important clues on the conditions of the state transitions, both in terms of spectra and timing. The recent addition of monitoring in the optical-infrared and the radio band significantly extended our knowledge of the relation between the jets and the spectral states. However, there are still very important unanswered questions, most importantly, whether the formation of the jet triggers any change in the spectral and temporal properties of the source. The answer to this question is also intrinsically related to the origin of the hard X-ray emission. In this work, the relation between the jet and the state transitions is discussed, using the data from GX 339-4, 4U 1543-47, H 1743-322, and GRO J1655-40, concentrating on the evolution of spectral and temporal parameters before, during and after the formation of the jet
X-ray detector on 2U cubesat BeEagleSAT of QB50
BeEagleSAT is a 2 Unit cubesat to be launched within the EU FP7 project QB 50. It is been produced by Istanbul Technical University and Turkish Air Force Academy. Sabanci University will provide a CdZnTe based semiconductor X-ray detector and associated readout electronics. The detector will utilize cross strip geometry to test the detection system in space, but it will not carry a mask for imaging. The readout will be established by an application specific integrated circuit controlled by a microcontroller. The system will have its own battery and will be turned on intermittently due to power and telemetry constraints. It will characterize the hard X-ray background in 20-150 keV at low Earth orbit conditions as a function of altitude
SEARCH FOR GRAVITATIONALLY REDSHIFTED 2.2 MEV LINE FROM 4U 1820-30
We have analyzed 1.7 Ms of the INTEGRAL data of the Low Mass X-Ray Binary (LMXB) 4U 1820-30 and searched for the redshifted 2.2 MeV neutron capture gamma-ray line. This source is unique in that it is
thought to be accreting pure Helium and might be a powerful 2.2 MeV line source. If detected, this line
would strongly constrain the neutron star equation of state, motivating this search. The line is expected to be redshifted to 1.30-1.72 MeV so we scanned the 1-2 MeV region. Although we failed to detect the redshifted 2.2 MeV line, mainly due to the intense background noise to which INTEGRAL is exposed, we placed upper limits on the source’s flux for different line widths. We plan to do analysis on the rest of the data (over 8 Ms) in the future
The effect of dust scattering on the timing properties of black holes
It has been known that sources with high absorption column density also have high dust column density along the line of sight. The differential delays caused by small angle scattering of X rays by dust may have important effects on the power spectra of Galactic black holes at low energies, and impact studies that use the relation between the rms amplitude of variability and energy to determine the origin of QPOs from these sources. We observed the high absorption column density (NH ˜1023 cm-2 ) GBH 1E1740.7-2942 for 20 ks simultaneously with XMM-Newton and RXTE. By comparing the power spectra from the events in the core of the point spread function (PSF) of XMM-Newton EPIC-PN (using imaging and excluding the scattering halo) and the RXTE data, we quantified the effects of small angle scattering on the timing properties of this source. The rms amplitude of variability in ˜2-6 keV band obtained from the XMM-Newton data is higher than that of the RXTE as expected from the a scattering halo contribution in the RXTE
Low/hard state of microquasars at low luminosities
Galactic black hole transients (GBHTs) spend most of their time in the low/hard spectral state during the outburst decay. This state exhibits a hard X-ray spectrum with X-ray flux correlating with both the radio and the infrared flux. As the luminosity declines, the spectra of the GBHTs got harder. However, for a few sources at very low luminosity levels a softening of the spectrum has been observed. In this work we discuss the evolution of GBHTs at the very lowest luminosity levels using RXTE data and discuss the behavior of the X-ray spectrum, as well as the reported correlations
Galactic black holes in the hard state, a multiwavelength view of accretion and ejection
The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with multi-wavelength campaigns using RXTE, SWIFT, SUZAKU, SPITZER, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent
contributions of our group to the field, including the SWIFT results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including SPITZER data) of GRO J 1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal
properties of selected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objectives of our group
Search for polarization from the prompt gamma-ray emission of GRB 041219a with SPI on INTEGRAL
Measuring the polarization of the prompt γ-ray emission from gamma-ray bursts (GRBs) can significantly improve our understanding of both the GRB emission mechanisms as well as the underlying engine driving the explosion. We searched for polarization in the prompt γ-ray emission of GRB 041219a with the SPI instrument on INTEGRAL. Using multiple-detector coincidence events in the 100-350 keV energy band, our analysis yields a polarization fraction from this GRB of 98%+/-33%. Statistically, we cannot claim a polarization detection from this source. Moreover, different event selection criteria lead to even less significant polarization fractions, e.g., lower polarization fractions are obtained when higher energies are included in the analysis. We cannot strongly rule out the possibility that the measured modulation is dominated by instrumental systematics. Therefore, SPI observations of GRB 041219a do not significantly constrain GRB models. However, this measurement demonstrates the capability of SPI to measure polarization, as well as the techniques developed for this analysis
- …