8 research outputs found

    Pharmacokinetics of darbepoetin alfa in pediatric patients with chronic kidney disease

    Full text link
    Darbepoetin alfa is a novel erythropoiesis-stimulating protein with a two- to threefold longer half-life than recombinant human erythropoietin (epoetin) in adult patients with chronic kidney disease (CKD). This randomized, open-label, crossover study was conducted to determine the pharmacokinetic profile of darbepoetin alfa in pediatric patients with CKD. Twelve patients 3–16 years of age with CKD were randomized and received a single 0.5 µg/kg dose of darbepoetin alfa administered intravenously (IV) or subcutaneously (SC). After a 14- to 16-day washout period, patients received an identical dose of darbepoetin alfa by the alternate route. After IV administration, the mean clearance of darbepoetin alfa was 2.3 ml/h per kg, with a mean terminal half-life of 22.1 h. After SC administration, absorption was rate limiting, with a mean terminal half-life of 42.8 h and a mean bioavailability of 54%. Comparison of these results with those from a previous study of darbepoetin alfa in adult patients indicated that the disposition of darbepoetin alfa administered IV or SC is similar in adult and pediatric patients, although absorption may be slightly more rapid in pediatric patients after SC dosing. The mean terminal half-life of darbepoetin alfa in this study was approximately two- to fourfold longer than that previously reported for epoetin in pediatric patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42306/1/s00467-002-0932-0.pd

    HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome

    No full text
    Steroid-sensitive nephrotic syndrome (SSNS) accounts for \u3e80% of cases of nephrotic syndrome in childhood. However, the etiology and pathogenesis of SSNS remain obscure. Hypothesizing that coding variation may underlie SSNS risk, we conducted an exome array association study of SSNS. We enrolled a discovery set of 363 persons (214 South Asian children with SSNS and 149 controls) and genotyped them using the Illumina HumanExome Beadchip. Four common single nucleotide polymorphisms (SNPs) in HLA-DQA1 and HLA-DQB1 (rs1129740, rs9273349, rs1071630, and rs1140343) were significantly associated with SSNS at or near the Bonferroni-adjusted P value for the number of single variants that were tested (odds ratio, 2.11; 95% confidence interval, 1.56 to 2.86; P=1.68×10(-6) (Fisher exact test). Two of these SNPs-the missense variants C34Y (rs1129740) and F41S (rs1071630) in HLA-DQA1-were replicated in an independent cohort of children of white European ancestry with SSNS (100 cases and ≤589 controls; P=1.42×10(-17)). In the rare variant gene set-based analysis, the best signal was found in PLCG2 (P=7.825×10(-5)). In conclusion, this exome array study identified HLA-DQA1 and PLCG2 missense coding variants as candidate loci for SSNS. The finding of a MHC class II locus underlying SSNS risk suggests a major role for immune response in the pathogenesis of SSNS

    HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome.

    No full text
    Steroid-sensitive nephrotic syndrome (SSNS) accounts for \u3e80% of cases of nephrotic syndrome in childhood. However, the etiology and pathogenesis of SSNS remain obscure. Hypothesizing that coding variation may underlie SSNS risk, we conducted an exome array association study of SSNS. We enrolled a discovery set of 363 persons (214 South Asian children with SSNS and 149 controls) and genotyped them using the Illumina HumanExome Beadchip. Four common single nucleotide polymorphisms (SNPs) in HLA-DQA1 and HLA-DQB1 (rs1129740, rs9273349, rs1071630, and rs1140343) were significantly associated with SSNS at or near the Bonferroni-adjusted P value for the number of single variants that were tested (odds ratio, 2.11; 95% confidence interval, 1.56 to 2.86; P=1.68×10(-6) (Fisher exact test). Two of these SNPs-the missense variants C34Y (rs1129740) and F41S (rs1071630) in HLA-DQA1-were replicated in an independent cohort of children of white European ancestry with SSNS (100 cases and ≤589 controls; P=1.42×10(-17)). In the rare variant gene set-based analysis, the best signal was found in PLCG2 (P=7.825×10(-5)). In conclusion, this exome array study identified HLA-DQA1 and PLCG2 missense coding variants as candidate loci for SSNS. The finding of a MHC class II locus underlying SSNS risk suggests a major role for immune response in the pathogenesis of SSNS

    HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome

    No full text
    Steroid-sensitive nephrotic syndrome (SSNS) accounts for \u3e80% of cases of nephrotic syndrome in childhood. However, the etiology and pathogenesis of SSNS remain obscure. Hypothesizing that coding variation may underlie SSNS risk, we conducted an exome array association study of SSNS. We enrolled a discovery set of 363 persons (214 South Asian children with SSNS and 149 controls) and genotyped them using the Illumina HumanExome Beadchip. Four common single nucleotide polymorphisms (SNPs) in HLA-DQA1 and HLA-DQB1 (rs1129740, rs9273349, rs1071630, and rs1140343) were significantly associated with SSNS at or near the Bonferroni-adjusted P value for the number of single variants that were tested (odds ratio, 2.11; 95% confidence interval, 1.56 to 2.86; P=1.68×10(-6) (Fisher exact test). Two of these SNPs-the missense variants C34Y (rs1129740) and F41S (rs1071630) in HLA-DQA1-were replicated in an independent cohort of children of white European ancestry with SSNS (100 cases and ≤589 controls; P=1.42×10(-17)). In the rare variant gene set-based analysis, the best signal was found in PLCG2 (P=7.825×10(-5)). In conclusion, this exome array study identified HLA-DQA1 and PLCG2 missense coding variants as candidate loci for SSNS. The finding of a MHC class II locus underlying SSNS risk suggests a major role for immune response in the pathogenesis of SSNS
    corecore