146 research outputs found
Timed sequential chemotherapy with concomitant Granulocyte Colony-Stimulating Factor for high-risk acute myelogenous leukemia: a single arm clinical trial
BACKGROUND: The timed-sequential chemotherapy regimen consisting of etoposide, mitoxantrone and cytarabine (EMA) is an effective therapy for relapsed or refractory acute myelogenous leukemia (AML). We postulated that granulocyte colony-stimulating factor (G-CSF) might enhance the cytotoxicity of EMA by increasing the proportion of leukemic blasts in S-phase. We added G-CSF to EMA (EMA-G) for therapy of advanced high-risk AML patients. METHODS: High-risk AML was defined as refractory, relapsed or secondary to either an antecedent hematologic disorder or exposure to cytotoxic agents. The patients were treated with one course of EMA-G consisting of mitoxantrone and cytarabine on days 1–3, and etoposide and cytarabine on days 8–10. G-CSF was started on day 4 and continued until absolute neutrophil count recovered. RESULTS: Thirty patients were enrolled. The median age was 51 years (range, 25–75). Seventeen (61%) patients had unfavorable cytogenetic karyotypes. Twenty (69%) patients had secondary AML. Ten (34%) had relapsed disease. Four (14%) had refractory AML. Three (10%) patients died from febrile neutropenia and sepsis. Major non-hematologic toxicity included hyperbilirubimenia, renal insufficiency, mucositis, diarrhea, nausea and vomiting, skin rash. A complete remission was achieved in 13 (46%) patients. Median overall survival was 9 months (range, 0.5–66). Median relapse-free survival (RFS) for those who had a CR was 3 months (range, 0.5–63) with RFS censored at the time of allogeneic bone marrow transplantation or peripheral stem cell transplantation for 6 of the patients. CONCLUSIONS: EMA-G is a safe and efficacious option for induction chemotherapy in advanced, high-risk AML patients. The activity of EMA may be increased if applied in patients with less advanced disease
Histone H4 acetylation by immunohistochemistry and prognosis in newly diagnosed adult acute lymphoblastic leukemia (ALL) patients
Background: Histone deacetylase (HDAC) inhibitors are a novel anti-tumor therapy. To determine whether HDAC inhibitors may be useful in the treatment of adult acute lymphoblastic leukemia (ALL), we examined the acetylation of histone H4 by immunohistochemistry in newly diagnosed ALL patients and evaluated the impact of acetylation on complete remission (CR) rate, relapse-free survival (RFS), and overall survival (OS).
Methods: Patients >= 18 years of age and an available diagnostic bone marrow biopsy were evaluated. Cox proportional hazards analysis was used to identify univariate and multivariate correlates of CR, RFS, and OS. The variables histone H4 acetylation (positive or negative), white blood count, cytogenetic (CG) risk group (CALGB criteria), and age were used in multivariate analysis.
Results: On multivariate analysis, histone acetylation was associated with a trend towards an improved OS (for all CG risk groups) (HR = 0.51, p = 0.09). In patients without poor risk CG, there was an impressive association between the presence of histone acetylation and an improved CR rate (OR 3.43, p = 0.035), RFS (HR 0.07, p = 0.005), and OS (HR 0.24, p = 0.007). This association remained statistically significant in multivariate analysis.
Conclusions: These data provide a rationale for the design of novel regimens incorporating HDAC inhibitors in ALL
Recommended from our members
High-Resolution Genomic Scan for Cryptic Chromosomal Lesions in MDS and AML
Abstract
Cytogenetic analysis is of eminent importance for the diagnosis and prognosis of hematologic malignancies. Due to limitations of traditional karyotyping, novel technologies which improve resolution and sensitivity are under development. In array-based comparative genomic hybridization (A-CGH), differentially labeled test and reference DNA samples are hybridized to genomic microarrays. Differences in sequence copy number between the samples are reflected in a shift of the fluorescent intensity. The resolution of A-CGH is limited solely by the number of clones; it is theoretically possible to achieve linear coverage of the chromosomes. The principle of the CGH techniques allows for detection of unbalanced chromosomal changes of the whole genome. These types of genomic aberrations are most common in MDS, but may exist and further subclassify malignancies with defined balanced translocations. In MDS, depending on the study, 40–60% of patients have a normal or non-informative karyotype by traditional methods. It is likely that this number may be reduced if the resolution and sensitivity level is increased. Additionally, diagnosis of patients with known chromosomal abnormalities can be further refined.
We first applied A-CGH to the analysis of normal marrow (N=8) to establish whether it will detect chromosomal defects that may acquired and are compatible with normal hematopoiesis. Moreover, defects may be present in healthy elderly. We utilized arrays of up to 2621 clones with a maxium coverage of 1Mb (Vysis, Spectral Genomics). The results were verified by a dye-swap protocol on two arrays per sample. Four controls showed a normal array profile or only changes in clones previously identified as having a polymorphic copy number within the human genome. The remaining controls had changes including a loss of material on 6p (N=1), loss of 6p and 8q material (N=1) and a gain of 4p and loss of 9p sequences (N=1). These changes may reflect unidentified polymorphisms. In contrast, one control had gains of multiple contiguous clones on chromosomes 9, 15 and 22. We also studied the marrow of patients with advanced MDS (N=43) using A-CGH and traditional cytogenetics. The cohort included patients with known singular lesions (N=7) and complex karyotypes (N=1). The remaining patients had either normal or non-informative cytogenetics. For a del 5q patient and a trisomy 21 patient, A-CGH verified the karyotype without identifying further lesions, in a second del 5q patient was a gain of material on 19p, and a monosomy X patient had a gain of 1p36 by CGH. In 3 cases with partially clonal defects, A-CGH did not detect the abnormality. A normal genomic composition was confirmed in a patient with noninformative (N=1) and normal (N=1) karyotypes. Losses of material on 2q and 3q and gains of material on 22q and the 11p telomeric region were identified in a patient with normal cytogenetics, while another "normal" had gains on 2p, 14q and 21q. Additionally, one normal karyotype had loss of chromosome 16 material and one had loss of 6p sequences. This pilot study demonstrates the utility of A-CGH analysis to study chromosomal aberrations in MDS. A-CGH allows for the detection of cytogenetically undetected abnormalities. Analysis of a large number of samples may allow for the detection of consensus defects or global genomic instability with clinical implications
Recommended from our members
A decision analysis to determine the appropriate treatment for low-risk myelodysplastic syndromes
Recommended from our members
White blood cell count nadir following remission induction chemotherapy is predictive of outcome in older adults with acute myeloid leukemia
Kinetics of white blood cell (WBC) elimination following induction chemotherapy for older adults with acute myeloid leukemia (AML) may serve as a surrogate for its effectiveness and safety by enabling real-time prognostication. We reviewed 122 older adults with AML treated at the Cleveland Clinic. Recursive partitioning analysis was used to identify optimal cut points in nadir WBC count and time to WBC nadir that correlate with survival. Multivariable analysis identified time to WBC nadir less than or equal to 10 days (HR 2.15, 95%CI 1.12 - 4.12, p = 0.02), low WBC nadir (less than 0.04×109 l, HR 2.68, 95%CI 1.15 - 6.23, p = 0.02) and high WBC nadir (greater than 0.12×109 l HR 1.5, 95%CI 0.96 - 2.37, p = 0.08), as predictors of worse outcomes. Time to WBC nadir predicts survival. The absolute WBC nadir value follows a J-curve, with lower value indicating a worse outcome
- …