2 research outputs found

    U-band Measurement of Star Formation in Cluster Galaxies

    Get PDF
    We propose to obtain deep U-band observations of 14 low-redshift (z ≤ 0.06) galaxy clusters using the WIYN 0.9m+HDI telescope/detector to complete our survey to probe star formation of galaxies in high-density environments. These observations, combined with previously obtained data of 11 clusters observed using the same telescope+detector, will give us a statistically significant sample for the Ph.D. dissertation of co-I Gihan Gamage. Clusters are selected from 57 clusters in which we have obtained deep B- and R-band data using the KPNO 0.9m+MOSA. U-band data will allow us to explore relative changes in the luminosity function for the U- and R-band as a function of cluster-centric radius. The large field-of-view of the telescope+detector will permit us to map out the spatial distribution of star forming galaxies from the core region to the outskirts. Comparing U-band observations with our R-band data will provide the necessary leverage to look for enhancements/quenching of star formation as galaxies fall into the cluster. These observations allow us to probe ~ 2 mag fainter than SDSS

    Mapping Star Formation from the Core to the Outskirts of Galaxy Clusters

    Get PDF
    We propose for time to complete our u- and r-band imaging program of 30 low-redshift (z ≤ 0.03) galaxy clusters using the CTIO Blanco 4m+DECam telescope/detector combination. These data will allow us to probe star formation from the cluster core to the infall region, and complete the acquisition of observations for the Ph.D. dissertation of Gihan Gamage (University of North Dakota). The deep u- and r-band data will allow us to explore relative changes in the luminosity function, dwarf-to-giant ratio, blue fraction, and galaxy morphological type as a function of cluster-centric radius for a statistically significant sample of 30 clusters. The large field-of-view of the telescope+detector will permit us to not only map star formation out to the infall region, but also to probe dwarf galaxies using a reasonable exposure time due to the low redshift of our target sample. The comparison of u- and r-band observations will provide the necessary leverage to look for enhancements/quenching of star formation as galaxies fall into the cluster environment from the low density field region
    corecore