46 research outputs found
Heat transfer research on enhanced heating surfaces in pool boiling
The paper focuses on the analysis of the enhanced surfaces in such applications as boiling heat transfer. The testing measurement module with enhanced heating surfaces was used for pool boiling research. Pool boiling experiments were conducted with distilled water at atmospheric pressure in the vessel using an enhanced sample as the bottom heating surface. The samples are soldered to a copper heating block of the round cross-section .They were placed: in the fluid (saturation temperature measurement), under the sample for temperature determination. A vessel made of four flat glass panes was used for visualization. The heated surfaces in contact with the fluid differed in roughness were smooth or enhanced. This paper analyzes the effects of the microstructured heated surface on the heat transfer coefficient. The results are presented as relationships between the heat transfer coefficient and the heat flux and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported for the enhanced surfaces
Heat transfer research on enhanced heating surfaces in pool boiling
The paper focuses on the analysis of the enhanced surfaces in such applications as boiling heat transfer. The testing measurement module with enhanced heating surfaces was used for pool boiling research. Pool boiling experiments were conducted with distilled water at atmospheric pressure in the vessel using an enhanced sample as the bottom heating surface. The samples are soldered to a copper heating block of the round cross-section .They were placed: in the fluid (saturation temperature measurement), under the sample for temperature determination. A vessel made of four flat glass panes was used for visualization. The heated surfaces in contact with the fluid differed in roughness were smooth or enhanced. This paper analyzes the effects of the microstructured heated surface on the heat transfer coefficient. The results are presented as relationships between the heat transfer coefficient and the heat flux and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported for the enhanced surfaces
Using the adsorption chillers for waste heat utilisation from the CCS installation
Worldwide tendencies in the scope of environmental protection demonstrate the requirement for the limited carbon dioxide emission, that influences on the development of greenhouse effect. As a result of coal as a basic fuel used in the professional power industry, this industry sector is the greatest CO2 polluter and it means that works on the reduction of carbon dioxide in such industry are completely justified. In the IPSEpro programming environment, a reference block model for a conventional coal power station was elaborated, including the CO2 separation unit basing on the adsorption methods with the CO2 preparation installation to liquid state. Simulation researches were conducted with means of numeric techniques, that enabled the system analysis for the CO2 separation unit with the CO2 preparation system to the liquid state, as well as analysis was made for the use of chiller systems, basing on the adsorption technology for waste heat use originating from the compression of CO2 in a cascade system, as well as for potential opportunities for further exploitation of the produced chilled water in the CCS cycle. We analysed in these papers the opportunities for chiller systems application, based on the adsorption chillers in the CCS installation used for the reduction of CO2 emission in the coal power station and its influence on the operation of a power station cycle
Mo偶liwo艣ci wykorzystania ma艂ych uk艂ad贸w kogeneracyjnych w instalacjach Prosumenckich
W niniejszej pracy zaprezentowano mo偶liwo艣ci zastosowania ma艂ych uk艂ad贸w kogeneracyjnych do produkcji energii elektrycznej i ciep艂a 艂膮cznie, na przyk艂adzie Laboratorium Uk艂ad贸w Kogeneracji (LUK) w Centrum Energetyki - AGH oraz mo偶liwo艣ci badawcze laboratorium LUK
Adsorption bed configurations for adsorption cooling application
Important parameters used for adsorption chillers, e.g. cooling capacity, coefficient of performance, are strictly dependent on heat and mass transfer conditions between adsorbent mass and the cooling/heating medium. With the aim of energy efficiency increasing it is essential to reduce heat transfer resistance. Different bed configurations and heat exchangers constructions are recommended for adsorption bed application. In the paper the review of commonly used adsorption bed configurations, i.e. loose-grain beds or fixed beds, is presented. Also, different heat exchangers for adsorption technology were described. The characteristic features of commonly applied constructions, both for commercial use and scientific research, were presented. The experimental studies presented in the literature were investigated and the substantial conclusions from the literature review are mentioned. Also, the proposition of new adsorption bed construction using the binder and additives was mentioned
Transitional Phenomena on Phase Change Materials
One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range). This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs). In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs) and solid-solid phase change materials (S-S PCMs). For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat
Visualization and research of gas-liquid two phase flow structures in cylindrical channel
Two-phase flows are commonly found in many industries, especially in systems, where efficient and correct functioning depend on specific values of flow parameters. In thermal engineering and chemical technology the most popular types of two-phase mixture are gas-liquid or liquid-vapour mixtures. Bubbles can create in flow different structures and determine diverse properties of flow (velocity of phase, void fraction, fluctuations of pressure, pipe vibrations, etc.). That type of flow is difficult to observe, especially in liquid-vapour mixture, where vapour is being made by heating the medium. Production of vapour and nucleation process are very complicated issues, which are important part of two-phase flow phenomenon. Gas-liquid flow structures were observed and described with figures, but type of structure depends on many parameters. Authors of this paper made an attempt to simulate gas-liquid flow with air and water. In the paper there was presented specific test stand built to observe two-phase flow structures, methodology of experiment and conditions which were maintained during observation. The paper presents also the structures which were observed and the analysis of results with reference to theoretical models and diagrams available in literature
Pierwsza polska mobilna stacja tankowania wodoru
W artykule przedstawiono pierwsz膮 w Polsce mobiln膮 stacj臋 tankowania wodoru, b臋d膮c膮 propozycj膮 rozwi膮zania problemu braku infrastruktury tankowania wodoru w Polsce. W oparciu o analiz臋 stanu techniki i aktualnych potrzeb w zakresie rozwoju elektromobilno艣ci, podj臋to pr贸b臋 zbudowania innowacyjnej instalacji. Opisano koncepcj臋 konstrukcji stacji, zasad臋 dzia艂ania stacji, wyniki test贸w oraz osi膮gni臋te parametry pracy. Przedstawiono proces tankowania wodoru i obs艂ugi stacji
Transitional Phenomena on Phase Change Materials
One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range). This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs). In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs) and solid-solid phase change materials (S-S PCMs). For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat
Using the adsorption chillers for utilisation of waste heat from rotary kilns
Waste heat utilisation and its reclamation is important for increasing the efficiency of the electric power production and for decreased consumption of primary energy. Waste heat can be utilised for the electric power production or for manufacturing and processing purposes. According to long-term forecasts, the consumption of electric power with current consumption of about 150 TWh, can be increased to about 230 TWh in around 2040, what may lead to the increased energy consumption from fuels and the increased emission of harmful contaminants to the atmosphere. The cement subsector, next to the glass industry, is among the most power-consuming industries, and it consumes about 12-15% of total energy consumed by industry in total, whereas the CO2 emission from such industry exceeds about 5% in worldwide scale. In the cement sector, there is an increasing need for useful reclamation of waste energy, in order to obtain high energy-saving factors, and hence the financial and environmental benefits. In this paper the chances for waste energy reclamation from a rotary kiln are presented, with means of the used adsorption chillers