30 research outputs found

    Discovering cancer-associated transcripts by RNA sequencing

    Full text link
    High-throughput sequencing of poly-adenylated RNA (RNA-Seq) in human cancers shows remarkable potential to identify uncharacterized aspects of tumor biology, including gene fusions with therapeutic significance and disease markers such as long non-coding RNA (lncRNA) species. However, the analysis of RNA-Seq data places unprecedented demands upon computational infrastructures and algorithms, requiring novel bioinformatics approaches. To meet these demands, we present two new open-source software packages - ChimeraScan and AssemblyLine - designed to detect gene fusion events and novel lncRNAs, respectively. RNA-Seq studies utilizing ChimeraScan led to discoveries of new families of recurrent gene fusions in breast cancers and solitary fibrous tumors. Further, ChimeraScan was one of the key components of the repertoire of computational tools utilized in data analysis for MI-ONCOSEQ, a clinical sequencing initiative to identify potentially informative and actionable mutations in cancer patients’ tumors. AssemblyLine, by contrast, reassembles RNA sequencing data into full-length transcripts ab initio. In head-to-head analyses AssemblyLine compared favorably to existing ab initio approaches and unveiled abundant novel lncRNAs, including antisense and intronic lncRNAs disregarded by previous studies. Moreover, we used AssemblyLine to define the prostate cancer transcriptome from a large patient cohort and discovered myriad lncRNAs, including 121 prostate cancer-associated transcripts (PCATs) that could potentially serve as novel disease markers. Functional studies of two PCATs - PCAT-1 and SChLAP1 - revealed cancer-promoting roles for these lncRNAs. PCAT1, a lncRNA expressed from chromosome 8q24, promotes cell proliferation and represses the tumor suppressor BRCA2. SChLAP1, located in a chromosome 2q31 ‘gene desert’, independently predicts poor patient outcomes, including metastasis and cancer-specific mortality. Mechanistically, SChLAP1 antagonizes the genome-wide localization and regulatory functions of the SWI/SNF chromatin-modifying complex. Collectively, this work demonstrates the utility of ChimeraScan and AssemblyLine as open-source bioinformatics tools. Our applications of ChimeraScan and AssemblyLine led to the discovery of new classes of recurrent and clinically informative gene fusions, and established a prominent role for lncRNAs in coordinating aggressive prostate cancer, respectively. We expect that the methods and findings described herein will establish a precedent for RNA-Seq-based studies in cancer biology and assist the research community at large in making similar discoveries.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120814/1/mkiyer_1.pd

    One Eye is All You Need: Lightweight Ensembles for Gaze Estimation with Single Encoders

    Full text link
    Gaze estimation has grown rapidly in accuracy in recent years. However, these models often fail to take advantage of different computer vision (CV) algorithms and techniques (such as small ResNet and Inception networks and ensemble models) that have been shown to improve results for other CV problems. Additionally, most current gaze estimation models require the use of either both eyes or an entire face, whereas real-world data may not always have both eyes in high resolution. Thus, we propose a gaze estimation model that implements the ResNet and Inception model architectures and makes predictions using only one eye image. Furthermore, we propose an ensemble calibration network that uses the predictions from several individual architectures for subject-specific predictions. With the use of lightweight architectures, we achieve high performance on the GazeCapture dataset with very low model parameter counts. When using two eyes as input, we achieve a prediction error of 1.591 cm on the test set without calibration and 1.439 cm with an ensemble calibration model. With just one eye as input, we still achieve an average prediction error of 2.312 cm on the test set without calibration and 1.951 cm with an ensemble calibration model. We also notice significantly lower errors on the right eye images in the test set, which could be important in the design of future gaze estimation-based tools

    A growing field: The regulation of axonal regeneration by Wnt signaling

    No full text
    The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone movement. Therefore, these studies suggest that Wnt-induced pathways responsible for regulating axonal growth during embryogenesis could be repurposed to promote axonal growth after injury

    A growing field: The regulation of axonal regeneration by Wnt signaling

    No full text
    The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone movement. Therefore, these studies suggest that Wnt-induced pathways responsible for regulating axonal growth during embryogenesis could be repurposed to promote axonal growth after injury

    Identification of Ocular Biomarkers for the Development of an Early Stage Diagnostic Tool for Neurodegenerative Disease

    No full text
    Current methods of diagnosis for neurodegenerative diseases are almost purely qualitative and highly apparent only when extensive neuronal dystrophy and degeneration have occurred. Therefore, creating a clinically viable tool that leverages early biomarkers of neurodegenerative disease is necessary. Past research indicates that ocular biomarkers are a potential source of quantitative assessment for the early diagnosis of neurodegenerative disease. In this paper, we identify specific ocular biomarkers that could be used as a basis for the early detection of neurodegenerative disease, potentially using machine learning techniques. Furthermore, we outline data collection procedures that can be implemented for patients completing Pro-Saccade, Anti-Saccade, Express-Saccadic, and Smooth Pursuit tasks. We expect that the findings in this paper can be utilized to guide the future creation of tools and datasets for developing a gaze-based diagnostic tool
    corecore