37 research outputs found

    Development and validation of a mathematical equation to estimate glomerular filtration rate in cirrhosis: The rfh cirrhosis Gfr

    Get PDF
    Current expressions based on serum creatinine concentration overestimate kidney function in cirrhosis leading to significant differences between "true" and calculated glomerular filtration rate (GFR). We compared the performance of MDRD-4, MDRD-6 and CKD-EPI with "true" GFR and the impact of this difference on MELD calculation. We subsequently developed and validated a GFR equation specifically for cirrhosis and compared the performance of the new derived formula with existing GFR formulas. We included 469 consecutive patients who had a transplant assessment between 2011 and 2014. "True" GFR (mGFR) was measured using plasma isotope clearance according to a technique validated in patients with ascites. A corrected creatinine was derived from the mGFR after application of the MDRD formula. Subsequently, a corrected MELD was calculated and was compared with the conventionally calculated MELD. Stepwise multiple linear regression was used to derive a GFR equation. This was compared with the measured GFR in independent external and internal validation sets of 82 and 174 patients with cirrhosis respectively. A difference>20 ml/min/1.73m(2) between existing formulae and mGFR was observed in 226 (48.2%) patients. The corrected MELD score was ≥3 points higher in 177 (37.7%) patients. The predicted equation derived (R(2) =74·6%) was: GFR=45·9x(creatinine(-0) ·(836) )x(urea(-0) ·(229) )x(INR(-0) ·(113) )x(age(0) ·(129) )x(sodium(0) ·(972) )x1·236(if male)x0·92(if moderate/severe ascites). The model was a good fit and showed the greatest accuracy compared to that of existing formulae. CONCLUSION: We developed and validated a new accurate model for GFR assessment in cirrhosis, the RFH cirrhosis GFR, using readily available variables. This remains to be tested and incorporated in prognostic scores in patients with cirrhosis

    Adiposity factors are not related to the presence of colorectal adenomas

    No full text
    Aris Chronis, Konstantinos Thomopoulos, Apostolos Sapountzis, Christos Triantos, Maria Kalafateli, Charalampos Kalofonos, Vassiliki NikolopoulouDepartment of Internal Medicine, Division of Gastroenterology, University Hospital, Patras, GreecePurpose: Adiposity has been thought to be related to colorectal carcinogenesis. The aim of this study was to explore any association between obesity factors and the presence of colorectal adenoma, a potential precancerous lesion.Patients and methods: Two hundred and six consecutive patients undergoing colonoscopy without colorectal cancer were enrolled in the study. Anthropometric measures and other adiposity-related laboratory variables including insulin resistance and serum adiponectin levels were recorded and correlated with the presence of adenoma.Results: Colorectal adenoma was detected in 68/206 patients (33%), tubular adenoma(s) in 38 patients, and tubulovillous or villous in 30 patients. Twenty-one patients (10.2%) had at least one proximal polyp. The size of the largest adenoma was ≤10 mm in 40 patients and >10 mm in 28 patients. No statistically significant difference was observed in body mass index, waist circumference, fasting plasma glucose concentration, insulin, homeostatic metabolic assessment, cholesterol, low-density lipoproteins, high-density lipoprotein, or triglycerides between patients with and without adenoma. In addition, there was no difference in plasma adiponectin between patients with adenoma (11.1 ± 6 µg/mL) and controls (10.2 ± 7.8 µg/mL). Furthermore, no significant difference in any parameter was found between patients with advanced adenoma and no advanced adenoma, nor between patients with proximal or distal tumors.Conclusion: This study found that the presence of colorectal adenoma is not correlated with any adiposity factor. Moreover, obesity does not appear to be associated with the site or the presence of more advanced lesions.Keywords: adiposity, colorectal adenoma, polyp, adiponecti

    Interventions for hereditary haemochromatosis: An attempted network meta-analysis

    Get PDF
    Background: Hereditary haemochromatosis is a genetic disorder related to proteins involved in iron transport, resulting in iron load and deposition of iron in various tissues of the body. This iron overload leads to complications including liver cirrhosis (and related complications such as liver failure and hepatocellular carcinoma), cardiac failure, cardiac arrhythmias, impotence, diabetes, arthritis, and skin pigmentation. Phlebotomy (venesection or 'blood letting') is the currently recommended treatment for hereditary haemochromatosis. The optimal treatment of hereditary haemochromatosis remains controversial. Objectives: To assess the comparative benefits and harms of different interventions in the treatment of hereditary haemochromatosis through a network meta-analysis and to generate rankings of the available treatments according to their safety and efficacy. However, we found only one comparison. Therefore, we did not perform the network meta-analysis and we assessed the comparative benefits and harms of different interventions using standard Cochrane methodology. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded, World Health Organization International Clinical Trials Registry Platform, and randomised clinical trials registers to March 2016 to identify randomised clinical trials on treatments for hereditary haemochromatosis. Selection criteria: We included only randomised clinical trials (irrespective of language, blinding, or publication status) in participants with hereditary haemochromatosis. We excluded trials which included participants who had previously undergone liver transplantation. We considered any of the various interventions compared with each other or with inactive treatment. Data collection and analysis: We used standard methodological procedures expected by Cochrane. We calculated the odds ratio (OR) and rate ratio with 95% confidence intervals (CI) using both fixed-effect and random-effects models with RevMan 5 based on available-participant analysis. We assessed risk of bias according to Cochrane, controlled risk of random errors with Trial Sequential Analysis, and assessed the quality of the evidence using GRADE. Main results: Three trials with 146 participants met the inclusion criteria of this review. Two parallel group trials with 100 participants provided information on one or more outcomes. The remaining trial was a cross-over trial, with no usable data for analysis. All the trials were at high risk of bias. Overall, all the evidence was of very low quality. All three trials compared erythrocytapheresis (removal of red cells only, instead of whole blood) versus phlebotomy. Two of the trials shared the same first author. The mean or median age in the three trials ranged from 42 to 55 years. None of the trials reported whether the included participants were symptomatic or asymptomatic or a mixture of both. Two trials were conducted in people who were haemochromatosis treatment-naive. The trial that provided most data for this review excluded people with malignancy, heart failure, and serious cardiac arrhythmias. We found no trials assessing iron-chelating agents. Only one of the trials with 38 participants reported no short-term mortality and no serious adverse events at the end of the short-term follow-up (eight months). Two trials reported the proportion of people with adverse events: 10/49 (20.4%) in the erythrocytapheresis group versus 11/51 (21.6%) in the phlebotomy group. One of these two trials provided data on adverse event rates (42.1 events per 100 participants with erythrocytapheresis versus 52.6 events per 100 participants with phlebotomy). There was no evidence of differences in the proportion of people with adverse events and the number of adverse events (serious and non-serious) between the groups (proportion of people with adverse events: OR 0.93, 95% CI 0.36 to 2.43; participants = 100; trials = 2; number of adverse events: rate ratio 0.80, 95% CI 0.32 to 2.03; participants = 38; trial = 1). There was no difference between the groups regarding short-term health-related quality of life (mean difference (MD) 1.00, 95% CI -10.80 to 12.80; participants = 38; trials = 1). This outcome was measured using EQ-VAS (range: 0 to 100 where a higher score indicates better health-related quality of life). None of the trials reported mortality beyond one year, health-related quality of life beyond one year, liver transplantation, decompensated liver disease, cirrhosis, hepatocellular carcinoma, diabetes, or cardiovascular complications during the long-term follow-up. The two trials that provided data for this review were funded by parties with no vested interest in the results; the source of funding of the third trial was not reported. Authors' conclusions: There is currently insufficient evidence to determine whether erythrocytapheresis is beneficial or harmful compared with phlebotomy. Phlebotomy has less equipment requirements and remains the treatment of choice in people with hereditary haemochromatosis who require blood letting in some form. However, it should be noted that there is no evidence from randomised clinical trials that blood letting in any form is beneficial in people with hereditary haemochromatosis. Having said this, a trial including no treatment is unlikely to be conducted. Future trials should compare different frequencies of phlebotomy and erythrocytapheresis versus phlebotomy with and without different iron-chelating agents compared with each other, and with placebo. Such trials should include long-term follow-up of participants (e.g. using national record linkage databases) to determine whether treatments are beneficial or harmful in terms of clinical outcomes such as deaths, health-related quality of life, liver damage and its consequences, heart damage and its consequences, and other outcomes that are of importance to people with hereditary haemochromatosis

    Pharmacological interventions for acute hepatitis C infection

    No full text
    BACKGROUND: Hepatitis C virus (HCV) is a single-stranded RNA (ribonucleic acid) virus that has the potential to cause inflammation of the liver. The traditional definition of acute HCV infection is the first six months following infection with the virus. Another commonly used definition of acute HCV infection is the absence of HCV antibody and subsequent seroconversion (presence of HCV antibody in a person who was previously negative for HCV antibody). Approximately 40% to 95% of people with acute HCV infection develop chronic HCV infection, that is, have persistent HCV RNA in their blood. In 2010, an estimated 160 million people worldwide (2% to 3% of the world's population) had chronic HCV infection. The optimal pharmacological treatment of acute HCV remains controversial. Chronic HCV infection can damage the liver. OBJECTIVES: To assess the comparative benefits and harms of different pharmacological interventions in the treatment of acute HCV infection through a network meta-analysis and to generate rankings of the available pharmacological treatments according to their safety and efficacy. However, it was not possible to assess whether the potential effect modifiers were similar across different comparisons. Therefore, we did not perform the network meta-analysis and instead we assessed the comparative benefits and harms of different interventions versus each other or versus no intervention using standard Cochrane methodology. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded, World Health Organization International Clinical Trials Registry Platform, and randomised controlled trials registers to April 2016 to identify randomised clinical trials on pharmacological interventions for acute HCV infection. SELECTION CRITERIA: We included only randomised clinical trials (irrespective of language, blinding, or publication status) in participants with acute HCV infection. We excluded trials which included previously liver transplanted participants and those with other coexisting viral diseases. We considered any of the various pharmacological interventions compared with placebo or each other. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We calculated the odds ratio (OR) and rate ratio with 95% confidence intervals (CI) using both fixed-effect and random-effects models based on the available-participant analysis with Review Manager 5. We assessed risk of bias according to Cochrane, controlled risk of random errors with Trial Sequential Analysis, and assessed the quality of the evidence using GRADE. MAIN RESULTS: We identified 10 randomised clinical trials with 488 randomised participants that met our inclusion criteria. All the trials were at high risk of bias in one or more domains. Overall, the evidence for all the outcomes was very low quality evidence. Nine trials (467 participants) provided information for one or more outcomes. Three trials (99 participants) compared interferon-alpha versus no intervention. Three trials (90 participants) compared interferon-beta versus no intervention. One trial (21 participants) compared pegylated interferon-alpha versus no intervention, but it did not provide any data for analysis. One trial (41 participants) compared MTH-68/B vaccine versus no intervention. Two trials (237 participants) compared pegylated interferon-alpha versus pegylated interferon-alpha plus ribavirin. None of the trials compared direct-acting antivirals versus placebo or other interventions. The mean or median follow-up period in the trials ranged from six to 36 months.There was no short-term mortality (less than one year) in any group in any trial except for one trial where one participant died in the pegylated interferon-alpha plus ribavirin group (1/95: 1.1%). In the trials that reported follow-up beyond one year, there were no further deaths. The number of serious adverse events was higher with pegylated interferon-alpha plus ribavirin than with pegylated interferon-alpha (rate ratio 2.74, 95% CI 1.40 to 5.33; participants = 237; trials = 2; I2 = 0%). The proportion of people with any adverse events was higher with interferon-alpha and interferon-beta compared with no intervention (OR 203.00, 95% CI 9.01 to 4574.81; participants = 33; trials = 1 and OR 27.88, 95% CI 1.48 to 526.12; participants = 40; trials = 1). None of the trials reported health-related quality of life, liver transplantation, decompensated liver disease, cirrhosis, or hepatocellular carcinoma. The proportion of people with chronic HCV infection as indicated by the lack of sustained virological response was lower in the interferon-alpha group versus no intervention (OR 0.27, 95% CI 0.09 to 0.76; participants = 99; trials = 3; I2 = 0%). The differences between the groups were imprecise or not estimable (because neither group had any events) for all the remaining comparisons.Four of the 10 trials (40%) received financial or other assistance from pharmaceutical companies who would benefit from the findings of the research; the source of funding was not available in five trials (50%), and one trial (10%) was funded by a hospital. AUTHORS' CONCLUSIONS: Very low quality evidence suggests that interferon-alpha may decrease the incidence of chronic HCV infection as measured by sustained virological response. However, the clinical impact such as improvement in health-related quality of life, reduction in cirrhosis, decompensated liver disease, and liver transplantation has not been reported. It is also not clear whether this finding is applicable in the current clinical setting dominated by the use of pegylated interferons and direct-acting antivirals, although we found no evidence to support that pegylated interferons or ribavirin or both are effective in people with acute HCV infection. We could find no randomised trials comparing direct-acting antivirals with placebo or other interventions for acute HCV infection. There is significant uncertainty in the benefits and harms of the interventions, and high-quality randomised clinical trials are required

    Pharmacological interventions for acute hepatitis C infection

    No full text
    Background: Hepatitis C virus (HCV) is a single-stranded RNA (ribonucleic acid) virus that has the potential to cause inflammation of the liver. The traditional definition of acute HCV infection is the first six months following infection with the virus. Another commonly used definition of acute HCV infection is the absence of HCV antibody and subsequent seroconversion (presence of HCV antibody in a person who was previously negative for HCV antibody). Approximately 40% to 95% of people with acute HCV infection develop chronic HCV infection, that is, have persistent HCV RNA in their blood. In 2010, an estimated 160 million people worldwide (2% to 3% of the world's population) had chronic HCV infection. The optimal pharmacological treatment of acute HCV remains controversial. Chronic HCV infection can damage the liver. Objectives: To assess the comparative benefits and harms of different pharmacological interventions in the treatment of acute HCV infection through a network meta-analysis and to generate rankings of the available pharmacological treatments according to their safety and efficacy. However, it was not possible to assess whether the potential effect modifiers were similar across different comparisons. Therefore, we did not perform the network meta-analysis and instead we assessed the comparative benefits and harms of different interventions versus each other or versus no intervention using standard Cochrane methodology. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded, World Health Organization International Clinical Trials Registry Platform, and randomised controlled trials registers to April 2016 to identify randomised clinical trials on pharmacological interventions for acute HCV infection. Selection criteria: We included only randomised clinical trials (irrespective of language, blinding, or publication status) in participants with acute HCV infection. We excluded trials which included previously liver transplanted participants and those with other coexisting viral diseases. We considered any of the various pharmacological interventions compared with placebo or each other. Data collection and analysis: We used standard methodological procedures expected by Cochrane. We calculated the odds ratio (OR) and rate ratio with 95% confidence intervals (CI) using both fixed-effect and random-effects models based on the available-participant analysis with Review Manager 5. We assessed risk of bias according to Cochrane, controlled risk of random errors with Trial Sequential Analysis, and assessed the quality of the evidence using GRADE. Main results: We identified 10 randomised clinical trials with 488 randomised participants that met our inclusion criteria. All the trials were at high risk of bias in one or more domains. Overall, the evidence for all the outcomes was very low quality evidence. Nine trials (467 participants) provided information for one or more outcomes. Three trials (99 participants) compared interferon-alpha versus no intervention. Three trials (90 participants) compared interferon-beta versus no intervention. One trial (21 participants) compared pegylated interferon-alpha versus no intervention, but it did not provide any data for analysis. One trial (41 participants) compared MTH-68/B vaccine versus no intervention. Two trials (237 participants) compared pegylated interferon-alpha versus pegylated interferon-alpha plus ribavirin. None of the trials compared direct-acting antivirals versus placebo or other interventions. The mean or median follow-up period in the trials ranged from six to 36 months. There was no short-term mortality (less than one year) in any group in any trial except for one trial where one participant died in the pegylated interferon-alpha plus ribavirin group (1/95: 1.1%). In the trials that reported follow-up beyond one year, there were no further deaths. The number of serious adverse events was higher with pegylated interferon-alpha plus ribavirin than with pegylated interferon-alpha (rate ratio 2.74, 95% CI 1.40 to 5.33; participants = 237; trials = 2; I 2 = 0%). The proportion of people with any adverse events was higher with interferon-alpha and interferon-beta compared with no intervention (OR 203.00, 95% CI 9.01 to 4574.81; participants = 33; trials = 1 and OR 27.88, 95% CI 1.48 to 526.12; participants = 40; trials = 1). None of the trials reported health-related quality of life, liver transplantation, decompensated liver disease, cirrhosis, or hepatocellular carcinoma. The proportion of people with chronic HCV infection as indicated by the lack of sustained virological response was lower in the interferon-alpha group versus no intervention (OR 0.27, 95% CI 0.09 to 0.76; participants = 99; trials = 3; I 2 = 0%). The differences between the groups were imprecise or not estimable (because neither group had any events) for all the remaining comparisons. Four of the 10 trials (40%) received financial or other assistance from pharmaceutical companies who would benefit from the findings of the research; the source of funding was not available in five trials (50%), and one trial (10%) was funded by a hospital. Authors' conclusions: Very low quality evidence suggests that interferon-alpha may decrease the incidence of chronic HCV infection as measured by sustained virological response. However, the clinical impact such as improvement in health-related quality of life, reduction in cirrhosis, decompensated liver disease, and liver transplantation has not been reported. It is also not clear whether this finding is applicable in the current clinical setting dominated by the use of pegylated interferons and direct-acting antivirals, although we found no evidence to support that pegylated interferons or ribavirin or both are effective in people with acute HCV infection. We could find no randomised trials comparing direct-acting antivirals with placebo or other interventions for acute HCV infection. There is significant uncertainty in the benefits and harms of the interventions, and high-quality randomised clinical trials are required
    corecore