3 research outputs found
Effects of solubilizing surfactants and loading of antiviral, antimicrobial, and antifungal drugs on their release rates from ethylene vinyl acetate copolymer
This study investigates the effects of surfactants and drug loading on the drug release rate from ethylene vinyl acetate (EVA) copolymer. The release rate of nystatin from EVA was studied with addition of non-ionic surfactants Tween 60 and Cremophor RH 40. In addition, the effect of increasing drug load on the release rates of nystatin, chlorhexidine diacetate and acyclovir is also presented
In Vitro Drug Release Study of Methacrylate Polymer Blend System: Effect of Polymer Blend Composition, Drug Loading and Solubilizing Surfactants on Drug Release
The application of polymers as the drug delivery systems for treating oral infections is a relatively new area of research. The present study was to test the release of the antibacterial drug chlorhexidine diacetate (CHDA), the antifungal drug Nystatin (NYS) and the antiviral drug acyclovir (ACY) from polymer blends of poly(ethyl methacrylate) and poly(n-hexyl methacrylate) of different compositions. The effects of polymer blend composition, drug loading and solubilizing surfactants on the release of the drugs have been studied. Measurements of the in vitro rate of drug release showed a sustained release of drug over extended periods of time. Drug release rates decreased with increasing PEMA content in polymer blends. CHDA release rates increased steadily with increasing drug load. The drug release rates increased with the addition of surfactants. This study demonstrates that the three therapeutic agents show a sustained rate of drug release from polymer blends of PEMA and PHMA over extended periods of time. By varying polymer blend compositions as well as the drug concentration (loading), it is possible to control the drug release rates to a desired value. The drug release rate is enhanced by addition of surfactants that solubilize drugs in the polymer blends