4 research outputs found

    Subtemporal approach to basilar tip aneurysm with division of posterior communicating artery: Technical note

    Get PDF
    The subtemporal approach with division of the posterior communicating artery (PcomA) is described for treating aneurysms of the basilar tip. When the ipsilateral posterior cerebral artery (PCA) interferes with visibility and manipulation around the aneurysm neck and the artery is tethered by the PcomA and not mobilized, the PcomA can be divided near the junction with the PCA. The procedure permits PCA mobilization and exposes the neck of the aneurysm. We applied this procedure to a patient with a ruptured aneurysm of the basilar tip. The postoperative course was uneventful except for transient left oculomotor nerve palsy. Postoperative cerebral angiography and magnetic resonance imaging confirmed the respective disappearance of the aneurysm and no new ischemic lesions. The subtemporal approach allows safer and easier division of the PcomA near the junction to the PCA compared with the pterional approach, and the present procedure is more suitable for the subtemporal approach

    DNA Damage-Dependent Acetylation and Ubiquitination of H2AX Enhances Chromatin Dynamics▿ †

    No full text
    Chromatin reorganization plays an important role in DNA repair, apoptosis, and cell cycle checkpoints. Among proteins involved in chromatin reorganization, TIP60 histone acetyltransferase has been shown to play a role in DNA repair and apoptosis. However, how TIP60 regulates chromatin reorganization in the response of human cells to DNA damage is largely unknown. Here, we show that ionizing irradiation induces TIP60 acetylation of histone H2AX, a variant form of H2A known to be phosphorylated following DNA damage. Furthermore, TIP60 regulates the ubiquitination of H2AX via the ubiquitin-conjugating enzyme UBC13, which is induced by DNA damage. This ubiquitination of H2AX requires its prior acetylation. We also demonstrate that acetylation-dependent ubiquitination by the TIP60-UBC13 complex leads to the release of H2AX from damaged chromatin. We conclude that the sequential acetylation and ubiquitination of H2AX by TIP60-UBC13 promote enhanced histone dynamics, which in turn stimulate a DNA damage response
    corecore