826 research outputs found

    Spatial contexts can inhibit a mislocalization of visual stimuli during smooth pursuit

    Get PDF
    The position of a flash presented during pursuit is mislocalized in the direction of the pursuit. Although this has been explained by a temporal mismatch between the slow visual processing of flash and fast efferent signals on eye positions, here we show that spatial contexts also play an important role in determining the flash position. We put various continuously lit objects (walls) between veridical and to-be-mislocalized positions of flash. Consequently, these walls significantly reduced the mislocalization of flash, preventing the flash from being mislocalized beyond the wall (Experiment 1). When the wall was shortened or had a hole in its center, the shape of the mislocalized flash was vertically shortened as if cutoff or funneled by the wall (Experiment 2). The wall also induced color interactions; a red wall made a green flash appear yellowish if it was in the path of mislocalization (Experiment 3). Finally, those flash–wall interactions could be induced even when the walls were presented after the disappearance of flash (Experiment 4). These results indicate that various features (position, shape, and color) of flash during pursuit are determined with an integration window that is spatially and temporally broad, providing a new insight for generating mechanisms of eye-movement mislocalizations

    The effect of unpredicted visual feedback on activation in the secondary somatosensory cortex during movement execution

    Get PDF
    BACKGROUND: A mechanism that monitors the congruence between sensory inputs and motor outputs is necessary to control voluntary movement. The representation of limb position is constantly updated on the basis of somatosensory and visual information and efference copy from motor areas. However, the cortical mechanism underlying detection of limb position using somatosensory and visual information has not been elucidated. This study investigated the influence of visual feedback on information processing in somatosensory areas during movement execution using magnetoencephalography. We used an experimental condition in which the visual information was incongruent despite the motor execution and somatosensory feedback being congruent. Subjects performed self-paced bimanual movements of both thumbs, either symmetric or asymmetric, under normal visual and mirrored conditions. The mirror condition provided a visual feedback by showing a reflection of the subject’s right hand in place of the left hand. Therefore, in the Asymmetric task of the Mirror condition, subjects saw symmetric movements despite performing asymmetric movements. RESULTS: Activation in the primary somatosensory area (SI) revealed inhibition of neural activity and that in the secondary somatosensory area (SII) showed enhancement with voluntary movement. In addition, the SII contralateral to the side of stimulation was significantly enhanced in the Asymmetric task of the Mirror condition, which provided non-veridical visual feedback. CONCLUSIONS: These results suggested that visual information influenced the neuronal activity concerning sensorimotor interaction in the SII during motor execution. The SII contributes to the detection of unpredicted visual feedback of movement execution

    Gravitational lensing and Catastrophe theory

    Get PDF
    Singularities of caustics appeared in gravitational lensing effect are discussed analytically. Multipole expansion model of lensing object is mainly studied since it is tractable and universal. Our analyses are confirmed by numerical calculations and applied to multiple quasar system of PG1115+080. Consistencies with elliptical lens models are also discussed.Comment: 24 pages, latex, 18 figure

    Developmental changes in point-light walker processing during childhood: A two-year follow-up ERP study

    Get PDF
    AbstractEvent-related potentials were measured in twenty-four children aged 6–15 years, at one-year intervals for two years, to investigate developmental changes in each subject's neural response to a point-light walker (PLW) and a scrambled PLW (sPLW) stimulus. One positive peak (P1) and two negative peaks (N1 and N2) were observed in both occipitotemporal regions at approximately 130, 200, and 300–400 ms. The amplitude and latency of the P1 component measured by the occipital electrode decreased during development over the first one-year period. Negative amplitudes of both N1 and N2, induced by the PLW stimulus, were significantly larger than those induced by the sPLW stimulus. Moreover, for the P1–N1 amplitude, the values for the eight-year-old children were significantly larger than those for the twelve-year-old children. N1 and N2 latency at certain electrodes decreased with age, but no consistent changes were observed. These results suggest that enhanced electrophysiological responses to PLW can be observed in all age groups, and that the early components were changed even over the course of a single year at the age of twelve

    Asymmetric lateral inhibitory neural activity in the auditory system: a magnetoencephalographic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decrements of auditory evoked responses elicited by repeatedly presented sounds with similar frequencies have been well investigated by means of electroencephalography and magnetoencephalography (MEG). However the possible inhibitory interactions between different neuronal populations remains poorly understood. In the present study, we investigated the effect of proceeding notch-filtered noises (NFNs) with different frequency spectra on a following test tone using MEG.</p> <p>Results</p> <p>Three-second exposure to the NFNs resulted in significantly different N1m responses to a 1000 Hz test tone presented 500 ms after the offset of the NFNs. The NFN with a lower spectral edge closest to the test tone mostly decreased the N1m amplitude.</p> <p>Conclusion</p> <p>The decrement of the N1m component after exposure to the NFNs could be explained partly in terms of lateral inhibition. The results demonstrated that the amplitude of the N1m was more effectively influenced by inhibitory lateral connections originating from neurons corresponding to lower rather than higher frequencies. We interpret this effect of asymmetric lateral inhibition in the auditory system as an important contribution to reduce the asymmetric neural activity profiles originating from the cochlea.</p
    corecore