197 research outputs found
Neural Plasticity of Neonatal Hypoglossal Nerve for Effective Suckling
“This is a preprint of an article published in JOURNAL OF NEUROSCIENCE RESEARCH 2007; 85(11): 2518-2526”ArticleJournal of Neuroscience Research. 85(11): 2518-2526 (2007)journal articl
Stability of the monoclinic phase in the ferroelectric perovskite PbZr(1-x)TixO3
Recent structural studies of ferroelectric PbZr(1-x)TixO3 (PZT) with x= 0.48,
have revealed a new monoclinic phase in the vicinity of the morphotropic phase
boundary (MPB), previously regarded as the the boundary separating the
rhombohedral and tetragonal regions of the PZT phase diagram. In the present
paper, the stability region of all three phases has been established from high
resolution synchrotron x-ray powder diffraction measurements on a series of
highly homogeneous samples with 0.42 <=x<= 0.52. At 20K the monoclinic phase is
stable in the range 0.46 <=x<= 0.51, and this range narrows as the temperature
is increased. A first-order phase transition from tetragonal to rhombohedral
symmetry is observed only for x= 0.45. The MPB, therefore, corresponds not to
the tetragonal-rhombohedral phase boundary, but instead to the boundary between
the tetragonal and monoclinic phases for 0.46 <=x<= 0.51. This result provides
important insight into the close relationship between the monoclinic phase and
the striking piezoelectric properties of PZT; in particular, investigations of
poled samples have shown that the monoclinic distortion is the origin of the
unusually high piezoelectric response of PZT.Comment: REVTeX file, 7 figures embedde
Evidence for and phases in the morphotropic phase boundary region of : A Rietveld study
We present here the results of the room temperature dielectric constant
measurements and Rietveld analysis of the powder x-ray diffraction data on
(PMN-PT) in the composition range
to show that the morphotropic phase boundary (MPB)
region contains two monoclinic phases with space groups Cm (or type) and
Pm (or type) stable in the composition ranges and
, respectively. The structure of PMN-PT in the
composition ranges 0.26, and is found to be
rhombohedral (R3m) and tetragonal (P4mm), respectively. These results are
compared with the predictions of Vanderbilt & Cohen's theory.Comment: 20 pages, 11 pdf figure
Deletion of Glutamate Delta-1 Receptor in Mouse Leads to Aberrant Emotional and Social Behaviors
The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1) and glutamate δ2 (GluD2) receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO) were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS) administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder
GluRδ2 Expression in the Mature Cerebellum of Hotfoot Mice Promotes Parallel Fiber Synaptogenesis and Axonal Competition
Glutamate receptor delta 2 (GluRdelta2) is selectively expressed in the cerebellum, exclusively in the spines of the Purkinje cells (PCs) that are in contact with parallel fibers (PFs). Although its structure is similar to ionotropic glutamate receptors, it has no channel function and its ligand is unknown. The GluRdelta2-null mice, such as knockout and hotfoot have profoundly altered cerebellar circuitry, which causes ataxia and impaired motor learning. Notably, GluRdelta2 in PC-PF synapses regulates their maturation and strengthening and induces long term depression (LTD). In addition, GluRdelta2 participates in the highly territorial competition between the two excitatory inputs to the PC; the climbing fiber (CF), which innervates the proximal dendritic compartment, and the PF, which is connected to spiny distal branchlets. Recently, studies have suggested that GluRdelta2 acts as an adhesion molecule in PF synaptogenesis. Here, we provide in vivo and in vitro evidence that supports this hypothesis. Through lentiviral rescue in hotfoot mice, we noted a recovery of PC-PF contacts in the distal dendritic domain. In the proximal domain, we observed the formation of new spines that were innervated by PFs and a reduction in contact with the CF; ie, the pattern of innervation in the PC shifted to favor the PF input. Moreover, ectopic expression of GluRdelta2 in HEK293 cells that were cocultured with granule cells or in cerebellar Golgi cells in the mature brain induced the formation of new PF contacts. Collectively, our observations show that GluRdelta2 is an adhesion molecule that induces the formation of PF contacts independently of its cellular localization and promotes heterosynaptic competition in the PC proximal dendritic domain
Neuron-glial Interactions
Although lagging behind classical computational neuroscience, theoretical and computational approaches are beginning to emerge to characterize different aspects of neuron-glial interactions. This chapter aims to provide essential knowledge on neuron-glial interactions in the mammalian brain, leveraging on computational studies that focus on structure (anatomy) and function (physiology) of such interactions in the healthy brain. Although our understanding of the need of neuron-glial interactions in the brain is still at its infancy, being mostly based on predictions that await for experimental validation, simple general modeling arguments borrowed from control theory are introduced to support the importance of including such interactions in traditional neuron-based modeling paradigms.Junior Leader Fellowship Program by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006
- …