39 research outputs found

    Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface

    Get PDF
    Above-water radiometry depends on estimates of the reflectance factor rho of the sea surface to compute the in situ water-leaving radiance. The Monte Carlo code for ocean color simulations MOX is used in this study to analyze the effect of different environmental components on r values. A first aspect is examining the reflectance factor without and by accounting for the sky-radiance polarization. The influence of the sea-surface statistics at discrete grid points is then considered by presenting a new scheme to define the variance of the waves slope. Results at different sun elevations and sensor orientations indicate that the light polarization effect on r simulations reduces from similar to 17 to similar to 10% when the wind speed increases from 0 to 14ms(-1). An opposite tendency characterizes the modeling of the sea-surface slope variance, with r differences up to similar to 12% at a wind speed of 10ms(-1). The joint effect of polarization and the the sea-surface statistics displays a less systematic dependence on the wind speed, with differences in the range similar to 13 to similar to 18%. The r changes due to the light polarization and the variance of the waves slope become more relevant at sky-viewing geometries respectively lower and higher than 40 degrees with respect to the zenith. An overall compensation of positive and negative offsets due to light polarization is finally documented when considering different sun elevations. These results address additional investigations which, by combining the modeling and experimental components of marine optics, better evaluate specific measurement protocols for collecting above-water radiometric data in the field. (C) 2016 Optical Society of Americ

    Performance Evaluation of Parallel Sparse Matrix–Vector Products on SGI Altix3700

    Get PDF
    Abstract. The present paper discusses scalable implementations of sparse matrix-vector products, which are crucial for high performance solutions of large-scale linear equations, on a cc-NUMA machine SGI Altix3700. Three storage formats for sparse matrices are evaluated, and scalability is attained by implementations considering the page allocation mechanism of the NUMA machine. Influences of the cache/memory bus architectures on the optimum choice of the storage format are examined, and scalable converters between storage formats shown to facilitate exploitation of storage formats of higher performance.

    Bio-optical Algorithms for European Seas: Performance and Applicability of Neural-Net Inversion Schemes

    Get PDF
    The report presents and discusses the application of Multi Layer Perceptron (MLP) neural networks to derive Chlorophyll-a concentration (Chl-a), absorption of the yellow substance at 412 nm (ays(412)) and concentration of the total suspended matter (TSM) from remote sensing reflectance Rrs values. MLPs were developed on the basis of data collected within the framework of the Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP) programs carried out by the Institute for Environment and Sustainability (IES), JRC of E.C., Italy. Investigated oceanographic regions include the Eastern Mediterranean Sea, the Ligurian Sea, the Northern Adriatic Sea, the Western Black Sea, the English Channel and the Baltic Sea. The study verifies the applicability of MLPs to retrieve ocean color data products in each basin. For instance, the highest accuracy in retrieving Chl-a has been found in the Easter Mediterranean Sea and the Ligurian Sea (14 and 25 %, respectively). In the case of ays(412), the MLP is the most performing in the waters of the English Channel and the Baltic Sea (14 and 13%). Instead, the TSM retrieval is the most accurate in the Black Sea and at the Acqua Alta Oceanographic Tower (14 and 19%). To enhance mission specific ocean color resuls, MLP coefficients are also computed applying band-shift corrections to produce Rrs spectra at wavelengths matching those of SeaWiFS, MODIS and MERIS. Resulting tables of MLP parameters are reported to permit independent applications of neural networks presented in this analysis.JRC.H.3-Global environement monitorin

    Technical note: Algal Pigment Index 2 in the Atlantic off the southwest Iberian Peninsula: standard and regional algorithms

    Get PDF
    In this study, Algal Pigment Index 2 (API2) is investigated in Sagres, an area located in the Atlantic off the southwestern Iberian Peninsula. Standard results provided by the MEdium Resolution Image Spectrometer (MERIS) ocean colour sensor were compared with alternative data products, determined through a regional inversion scheme, using both MERIS and in situ remote sensing reflectances (R-rs) as input data. The reference quantity for performance assessment is in situ total chlorophyll a (TChl a) concentration estimated through a phytoplankton absorption coefficient (i.e. equivalent to API2). Additional comparison of data products has also been addressed for TChl a concentration determined by high-performance liquid chromatography. The MERIS matchup analysis revealed a systematic underestimation of TChl a, which was confirmed with an independent comparison of product map analysis. The study demonstrates the importance of regional algorithms for the study area that could complement upcoming standard results of the current Sentinel-3/OLCI space mission

    In-water lidar simulations: the ALADIN ADM-Aeolus backscattered signal at 355 nm

    Get PDF
    The Lidar Ocean Color (LiOC) Monte Carlo code has been developed to simulate the in-water propagation of the lidar beam emitted by the ALADIN ADM-Aeolus instrument in the ultraviolet (UV) spectral region (∼ 355 nm). To this end, LiOC accounts for reflection/transmission processes at the sea surface, absorption and multiple scattering in the water volume, and reflection from the sea bottom. The water volume components included in the model are pure seawater, Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and/or a generic absorbing species. By considering the transmission/reception measurement geometry of ALADIN ADM-Aeolus, the study documents the variability of the normalized backscattered signal in different bio-optical conditions. The potential for data product retrieval based on information at 355 nm is considered by developing a demonstrative lookup table to estimate the absorption budget exceeding that explained by Chl-a. Results acknowledge the interest of space programs in exploiting UV bands for ocean color remote sensing, as, for instance, addressed by the PACE mission of NASA

    Effects of integration time on in-water radiometric profiles

    Get PDF
    This work investigates the effects of integration time on in-water downward irradiance E-d, upward irradiance E-u and upwelling radiance L-u profile data acquired with free-fall hyperspectral systems. Analyzed quantities are the subsurface value and the diffuse attenuation coefficient derived by applying linear and non-linear regression schemes. Case studies include oligotrophic waters (Case-1), as well as waters dominated by colored dissolved organic matter (CDOM) and non-algal particles (NAP). Assuming a 24-bit digitization, measurements resulting from the accumulation of photons over integration times varying between 8 and 2048ms are evaluated at depths corresponding to: 1) the beginning of each integration interval (FST); 2) the end of each integration interval (LST); 3) the averages of FST and LST values (AVG); and finally 4) the values weighted accounting for the diffuse attenuation coefficient of water (WGT). Statistical figures show that the effects of integration time can bias results well above 5% as a function of the depth definition. Results indicate the validity of the WGT depth definition and the fair applicability of the AVG one. Instead, both the FST and LST depths should not be adopted since they may introduce pronounced biases in E-u and L-u regression products for highly absorbing waters. Finally, the study reconfirms the relevance of combining multiple radiometric casts into a single profile to increase precision of regression products. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

    Assessment of ocean color atmospheric correction methods and development of a regional ocean color operational dataset for the Baltic Sea based on Sentinel-3 OLCI

    Get PDF
    The Baltic Sea is characterized by large gradients in salinity, high concentrations of colored dissolved organic matter, and a phytoplankton phenology with two seasonal blooms. Satellite retrievals of chlorophyll-a concentration (chl-a) are hindered by the optical complexity of this basin and the reduced performance of the atmospheric correction in its highly absorbing waters. Within the development of a regional ocean color operational processing chain for the Baltic Sea based on Sentinel-3 Ocean and Land Colour Instrument (OLCI) full-resolution data, the performance of four atmospheric correction processors for the retrieval of remote-sensing reflectance (Rrs) was analyzed. Assessments based on three Aerosol Robotic Network-Ocean Color (AERONET-OC) sites and shipborne hyperspectral radiometers show that POLYMER was the best-performing processor in the visible spectral range, also providing a better spatial coverage compared with the other processors. Hence, OLCI Rrs spectra retrieved with POLYMER were chosen as input for a bio-optical ensemble scheme that computes chl-a as a weighted sum of different regional multilayer perceptron neural nets. This study also evaluated the operational Rrs and chl-a datasets for the Baltic Sea based on OC-CCI v.6. The chl-a retrievals based on OC-CCI v.6 and OLCI Rrs, assessed against in-situ chl-a measurements, yielded similar results (OC-CCI v.6: R2 = 0.11, bias = −0.22; OLCI: R2 = 0.16, bias = −0.03) using a common set of match-ups for the same period. Finally, an overall good agreement was found between chl-a retrievals from OLCI and OC-CCI v.6 although differences between Rrs were amplified in terms of chl-a estimates

    European Radiometry Buoy and Infrastructure (EURYBIA): A Contribution to the Design of the European Copernicus Infrastructure for Ocean Colour System Vicarious Calibration

    Get PDF
    In the context of the Copernicus Program, EUMETSAT prioritizes the creation of an ocean color infrastructure for system vicarious calibration (OC-SVC). This work aims to reply to this need by proposing the European Radiometry Buoy and Infrastructure (EURYBIA). EURYBIA is designed as an autonomous European infrastructure operating within the Marine Optical Network (MarONet) established by University of Miami (Miami, FL, USA) based on the Marine Optical Buoy (MOBY) experience and NASA support. MarONet addresses SVC requirements in different sites, consistently and in a traceable way. The selected EURYBIA installation is close to the Lampedusa Island in the central Mediterranean Sea. This area is widely studied and hosts an Atmospheric and Oceanographic Observatory for long-term climate monitoring. The EURYBIA field segment comprises off-shore and on-shore infrastructures to manage the observation system and perform routine sensors calibrations. The ground segment includes the telemetry center for data communication and the processing center to compute data products and uncertainty budgets. The study shows that the overall uncertainty of EURYBIA SVC gains computed for the Sentinel-3 OLCI mission under EUMETSAT protocols is of about 0.05% in the blue-green wavelengths after a decade of measurements, similar to that of the reference site in Hawaii and in compliance with requirements for climate studies

    A high-performance computing framework for Monte Carlo ocean color simulations

    Get PDF
    This paper presents a high-performance computing (HPC) framework for Monte Carlo (MC) simulations in the ocean color (OC) application domain. The objective is to optimize a parallel MC radiative transfer code named MOX, developed by the authors to create a virtual marine environment for investigating the quality of OC data products derived from in situ measurements of in-water radiometric quantities. A consolidated set of solutions for performance modeling, prediction, and optimization is implemented to enhance the efficiency of MC OC simulations on HPC run-time infrastructures. HPC, machine learning, and adaptive computing techniques are applied taking into account a clear separation and systematic treatment of accuracy and precision requirements for large-scale MC OC simulations. The added value of the work is the integration of computational methods and tools for MC OC simulations in the form of an HPC-oriented problem-solving environment specifically tailored to investigate data acquisition and reduction methods for OC field measurements. Study results highlight the benefit of close collaboration between HPC and application domain researchers to improve the efficiency and flexibility of computer simulations in the marine optics application domain. (C) 2016 The Authors. Concurrency and Computation: Practice and Experience Published by John Wiley & Sons Ltd.Portuguese Foundation for Science and Technology (FCT/MEC) [PEst-OE/EEI/UI0527/2011]; ESA [22576/09/I-OL, ARG/003-025/1406/CIMA]; NOVA LINCS [UID/CEC/04516/2013]info:eu-repo/semantics/publishedVersio
    corecore