680 research outputs found

    Novel stripe-type charge ordering in the metallic A-type antiferromagnet Pr{0.5}Sr{0.5}MnO{3}

    Full text link
    We demonstrate that an A-type antiferromagnetic (AFM) state of Pr{0.5}Sr{0.5}MnO{3} exhibits a novel charge ordering which governs the transport property. This charge ordering is stripe-like, being characterized by a wave vector q ~ (0,0,0.3) with very anisotropic correlation parallel and perpendicular to the stripe direction. This charge ordering is specific to the manganites with relatively wide one-electron band width (W) which often exhibit a metallic A-type AFM state, and should be strictly distinguished from the CE-type checkerboard-like charge ordering which is commonly observed in manganites with narrower W such as La{1-x}Ca{x}MnO{3} and Pr{1-x}Ca{x}MnO{3}.Comment: REVTeX4, 5 pages, 4 figure

    Ordering Process and Its Hole Concentration Dependence of the Stripe Order in La{2-x}Sr{x}NiO{4}

    Full text link
    Ordering process of stripe order in La{2-x}Sr{x}NiO{4} with x being around 1/3 was investigated by neutron diffraction experiments. When the stripe order is formed at high temperature, incommensurability \epsilon of the stripe order has a tendency to show the value close to 1/3 for the samples with x at both sides of 1/3. With decreasing temperature, however, \epsilon becomes close to the value determined by the linear relation of \epsilon = n_h, where n_h is a hole concentration. This variation of the \epsilon strongly affects the character of the stripe order through the change of the carrier densities in stripes and antiferromagnetic domains.Comment: 5 pages, 3 figures, REVTeX, to be published in Phys. Rev.

    A Consideration of Thompson's Organization in Action

    Get PDF

    A Methodological Examination into the Autonomy of the 'Betriebswirtschaftslehre'

    Get PDF

    A controversy on W. Kirsch's "Decisionmaking-processes"

    Get PDF

    Orbital Ordering Structures in (Nd,Pr)0.5Sr0.5MnO3 Manganite Thin Films on Perovskite (011) Substrates

    Full text link
    Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films' resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.Comment: 19pages, 11 figure

    A Consideration of E. Jehle's critical view on Methodologies in Business Economics (I)

    Get PDF
    • …
    corecore