15 research outputs found

    Modulation of Growth Duration, Grain Yield and Nitrogen Recovery Efficiency by EMS Mutagenesis under <i>OsNRT2.3b</i> Overexpression Background in Rice

    No full text
    Growth duration is an important agronomic trait that determines the season and area of crop growth. Previous experiments showed that overexpression of nitrate transporter OsNRT2.3b significantly increased rice yield, nitrogen use efficiency, and growth duration. Through screening, we obtained four ethyl methanesulfonate (EMS)-mutagenized mutants with shorter growth duration compared with O8 of OsNRT2.3b overexpression line. The nitrogen translocation efficiency and physiological nitrogen use efficiency of the mutants were not significantly different from O8, which were increased by 24.4% and 14.2%, respectively compared with WT, but the growth duration of the mutant was significantly lower than O8. Analysis of O8 and mutants showed that the growth duration positively correlated with grain weight per panicle, grain yield, and nitrogen recovery efficiency. In conclusion, our results provide a new idea for balancing rice yield and growth duration

    Effects of Carbon and Nitrogen Fertilisers on Rice Quality of the <i>OsNRT2.3b</i>-Overexpressing Line

    No full text
    Excessive nitrogen fertiliser use reduces nitrogen use efficiency and causes significant damage to the environment. Carbon fertilisers have the advantage of improving soil fertility; however, the effects of carbon and nitrogen fertilisers on rice yield and quality are not clear. In this study, the nitrogen-efficient line (OsNRT2.3b-overexpressing [O8]) and wild type (WT) were treated with different levels of nitrogen and carbon fertilisers under field conditions to study the effects of different fertilisation treatments on rice quality. The results showed that the appearance, nutrition, and taste qualities of O8 were generally high compared with WT under various fertilisation treatment conditions in 2019 and 2020. Compared with 90 kg/ha and 270 kg/ha nitrogen fertiliser, a single application of 90 kg/ha and 270 kg/ha carbon fertiliser significantly reduced the protein content of O8 by approximately 37.08% and 35.50% in 2019 and 2020, respectively, compared with WT, and improved the eating quality of O8 and WT. However, the replacement of nitrogen fertiliser with 20% carbon fertiliser did not improve the eating quality of O8 and WT compared with a single application of nitrogen fertiliser. This study identifies a high-quality gene, OsNRT2.3b, for breeding high-quality rice and provides a theoretical basis for obtaining high-quality rice and molecular breeding

    Screening and identification of potential key biomarkers for glucocorticoid-induced osteonecrosis of the femoral head

    No full text
    Abstract Background Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common disease in osteoarticular surgery, with a high disability rate, which brings great physical and mental pain and economic burden to patients. Its specific pathogenesis has not been fully demonstrated, and there is a lack of recognized effective biomarkers for earlier detection and prompt treatment. This has become an urgent clinical problem for orthopedic scholars. Materials and methods We downloaded the gene expression profile dataset GSE123568 from the Gene Expression Omnibus database, used STRING and Cytoscape to carry out module analysis and built a gene interaction network. The four core genes most related to GIONFH in this network were ultimately found out by precise analysis and animal experiment were then conducted for verification. In this verification process, thirty-six New Zealand white rabbits were randomly divided into blank control group, model group and drug group. Except for the blank control group, the animal model of GIONFH was established by lipopolysaccharide and methylprednisolone, while the drug group was given the lipid-lowering drugs for intervention as planned. The rabbits were taken for magnetic resonance imaging at different stages, and their femoral head specimens were taken for pathological examination, then the expression of target genes in the femoral head specimens of corresponding groups was detected. Validation methods included RT-PCR and pathological examination. Results A total of 679 differential genes were selected at first, including 276 up-regulated genes and 403 down-regulated genes. Finally, four genes with the highest degree of correlation were screened. Animal experiment results showed that ASXL1 and BNIP3L were in low expression, while FCGR2A and TYROBP were highly expressed. Conclusion Through animal experiments, it was confirmed that ASXL1, BNIP3L, FCGR2A and TYROBP screened from the comparative analysis of multiple genes in the database were closely related to GIONFH, which is important for early diagnosis of Glucocorticoid-induced osteonecrosis of the femoral head

    Effects of Carbon and Nitrogen Fertilisers on Rice Quality of the OsNRT2.3b-Overexpressing Line

    No full text
    Excessive nitrogen fertiliser use reduces nitrogen use efficiency and causes significant damage to the environment. Carbon fertilisers have the advantage of improving soil fertility; however, the effects of carbon and nitrogen fertilisers on rice yield and quality are not clear. In this study, the nitrogen-efficient line (OsNRT2.3b-overexpressing [O8]) and wild type (WT) were treated with different levels of nitrogen and carbon fertilisers under field conditions to study the effects of different fertilisation treatments on rice quality. The results showed that the appearance, nutrition, and taste qualities of O8 were generally high compared with WT under various fertilisation treatment conditions in 2019 and 2020. Compared with 90 kg/ha and 270 kg/ha nitrogen fertiliser, a single application of 90 kg/ha and 270 kg/ha carbon fertiliser significantly reduced the protein content of O8 by approximately 37.08% and 35.50% in 2019 and 2020, respectively, compared with WT, and improved the eating quality of O8 and WT. However, the replacement of nitrogen fertiliser with 20% carbon fertiliser did not improve the eating quality of O8 and WT compared with a single application of nitrogen fertiliser. This study identifies a high-quality gene, OsNRT2.3b, for breeding high-quality rice and provides a theoretical basis for obtaining high-quality rice and molecular breeding

    OsTBP2.1, a TATA-Binding Protein, Alters the Ratio of <i>OsNRT2.3b</i> to <i>OsNRT2.3a</i> and Improves Rice Grain Yield

    No full text
    The OsNRT2.3a and OsNRT2.3b isoforms play important roles in the uptake and transport of nitrate during rice growth. However, it is unclear which cis-acting element controls the transcription of OsNRT2.3 into these specific isoforms. In this study, we used a yeast one-hybrid assay to obtain the TATA-box binding protein OsTBP2.1, which binds to the TATA-box of OsNRT2.3, and verified its important role through transient expression and RNA-seq. We found that the TATA-box of OsNRT2.3 mutants and binding protein OsTBP2.1 together increased the transcription ratio of OsNRT2.3b to OsNRT2.3a. The overexpression of OsTBP2.1 promoted nitrogen uptake and increased rice yield compared with the wild-type; however, the OsTBP2.1 T-DNA mutant lines exhibited the opposite trend. Detailed analyses demonstrated that the TATA-box was the key cis-regulatory element for OsNRT2.3 to be transcribed into OsNRT2.3a and OsNRT2.3b. Additionally, this key cis-regulatory element, together with the binding protein OsTBP2.1, promoted the development of rice and increased grain yield

    Grain boundary restructuring of multi-main-phase Nd-Ce-Fe-B sintered magnets with Nd hydrides

    No full text
    Multi-main-phase (MMP) Nd-Ce-Fe-B magnets prepared by sintering the mixture of Ce-free and Ce-containing RE2Fe14B (RE, rare earth) powders have been found to possess superior magnetic properties to the single-main-phase (SMP) ones. Purpose of this work is to further enhance the coercivity through restructuring the grain boundaries (GBs), which have strong influence on the short-range exchange coupling between adjacent grains. By incorporating 4 wt.% NdHX powders as the intergranular additive, coercivity of the (Pr, Nd)(22.3)Ce(8.24)Fe(bal)B0.98 (wt.%) MMP magnet has been substantially increased from 8.2 kOe to 13.1 kOe. Magnetic domain characterizations and the recoil loop measurements showed that the exchange coupling between adjacent grains has been weakened significantly due to the formation of continuous and smooth RE-rich GBs by the extra Nd after NdHX dehydrogenation. Elemental distribution analysis revealed that thicker Nd-rich 2:14:1 shells with stronger magnetocrystalline anisotropy have been formed in the outer region of the Ce-rich main phase grains, which is beneficial to enhance their effective anisotropy. In addition, the Ce-rich 2:14:1 shells surrounding the Nd-rich 2:14:1 grain cores became thinner, which is beneficial to weaken the magnetic dilution effect of such grains. Micromagnetic simulation results also suggest that the coercivity can be further enhanced once the grain boundary is nonmagnetic. Technically, enriching RE elements or reducing Fe content can weaken the ferromagnetism of the grain boundary phase as well as the exchange coupling between adjacent grains. The above findings might shed new insights into enhancing the coercivity of low cost Nd-Ce-Fe-B magnets. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Antibody Generation and Immunogenicity Analysis of EBV gp42 N-Terminal Region

    No full text
    Epstein&ndash;Barr virus (EBV) is the first reported oncogenic virus and infects more than 90% of adults worldwide. EBV can establish a latent infection in B lymphocytes which is essential for persistence and transmission. Glycoprotein gp42 is an indispensable member of the triggering complex for EBV entry into a B cell. The N-terminal region of gp42 plays a key role in binding to gH/gL and triggering subsequent membrane fusion. However, no antibody has been reported to recognize this region and the immunogenicity of gp42 N-domain remains unknown. In the present study, we have generated a panel of nine mAbs against the gp42 N-terminal region (six mAbs to gp42-44-61aa and three mAbs to gp42-67-81aa). These mAbs show excellent binding activity and recognize different key residues locating on the gp42 N-domain. Among the nine mAbs, 4H7, 4H8 and 11G10 cross-react with rhLCV-gp42 while other mAbs specifically recognize EBV-gp42. Our newly obtained mAbs provide a useful tool for investigating the gp42 function and viral infection mechanism of &gamma;-Herpesvirus. Furthermore, we assess the immunogenicity of the gp42 N-terminal region using the HBc149 particle as a carrier protein. The chimeric VLPs can induce high antibody titers and elicit neutralizing humoral responses to block EBV infection. More rational and effective designs are required to promote the gp42-N terminal region to become an epitope-based vaccine
    corecore