232 research outputs found

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Strengthening mechanisms of highly textured Cu/Co and Ag/Al nanolayers with high density twins and stacking faults

    Get PDF
    Metallic nanolayers have attracted increasing attention as they provide unique opportunity to investigate the influence of layer interfaces on mechanical properties of metallic nanocomposites. High strength is often achieved at small (several nm) individual layer thickness (h). Recently, we discovered high-density stacking faults in FCC Co in highly (100) textured Cu/Co multilayers. In contrast in (111) textured Cu/Co nanolayers, Co remained its stable HCP structure at large h. The two Cu/Co systems have very different size dependent strengthening behavior. HCP Cu/Co has much greater peak strength than FCC Cu/Co. The large discrepancy in their strengthening mechanisms is discussed and compared to those of highly textured Cu/Ni multilayer systems. In another highly textured nanolayers system, Ag/Al, epitaxial interfaces were observed across various h (1‑200 nm). High-density nanotwins and stacking faults appear in both Ag and Al layers, and stacking fault density in Al increases sharply with decreasing h. At smaller h, hardness of Ag/Al nanolayers increases monotonically and no softening was observed. These studies allow us to investigate the influence of layer interfaces, stacking faults and nanotwins on strengthening mechanisms of metallic nanolayers. This research is funded by DOE–OBES

    Stochastic spin-orbit-torque device as the STDP synapse for spiking neural networks

    Full text link
    Neuromorphic hardware as a non-Von Neumann architecture has better energy efficiency and parallelism than the conventional computer. Here, with numerical modeling spin-orbit torque (SOT) device using current-induced SOT and Joule heating effects, we acquire its magnetization switching probability as a function of the input current pulses and use it to mimic the spike-timing-dependent plasticity learning behavior like actual brain working. We further demonstrate that the artificial spiking neural network (SNN) built by this SOT device can perform unsupervised handwritten digit recognition with the accuracy of 80% and logic operation learning. Our work provides a new clue to achieving SNN-based neuromorphic hardware using high-energy efficiency and nonvolatile spintronics nanodevicesComment: 8 pages, 5 figure

    Understanding User Behavior in Volumetric Video Watching: Dataset, Analysis and Prediction

    Full text link
    Volumetric video emerges as a new attractive video paradigm in recent years since it provides an immersive and interactive 3D viewing experience with six degree-of-freedom (DoF). Unlike traditional 2D or panoramic videos, volumetric videos require dense point clouds, voxels, meshes, or huge neural models to depict volumetric scenes, which results in a prohibitively high bandwidth burden for video delivery. Users' behavior analysis, especially the viewport and gaze analysis, then plays a significant role in prioritizing the content streaming within users' viewport and degrading the remaining content to maximize user QoE with limited bandwidth. Although understanding user behavior is crucial, to the best of our best knowledge, there are no available 3D volumetric video viewing datasets containing fine-grained user interactivity features, not to mention further analysis and behavior prediction. In this paper, we for the first time release a volumetric video viewing behavior dataset, with a large scale, multiple dimensions, and diverse conditions. We conduct an in-depth analysis to understand user behaviors when viewing volumetric videos. Interesting findings on user viewport, gaze, and motion preference related to different videos and users are revealed. We finally design a transformer-based viewport prediction model that fuses the features of both gaze and motion, which is able to achieve high accuracy at various conditions. Our prediction model is expected to further benefit volumetric video streaming optimization. Our dataset, along with the corresponding visualization tools is accessible at https://cuhksz-inml.github.io/user-behavior-in-vv-watching/Comment: Accepted by ACM MM'2

    Efficient characteristics of exchange coupling and spin-flop transition in Py/Gd bilayer using anisotropic magnetoresistance

    Full text link
    The interlayer antiferromagnetic coupling rare-earth/transition-metal bilayer ferrimagnet systems have attracted much attention because they present variously unusual temperature-and field-dependent nontrivial magnetic states and dynamics. These properties and the implementation of their applications in spintronics highly depend on the significant temperature dependence of the magnetic exchange stiffness constant A. Here, we quantitatively determine the temperature dependence of magnetic exchange stiffness A_{Py-Gd} and A_{Gd} in the artificially layered ferrimagnet consisting of a Py/Gd bilayer, using a measurement of anisotropic magnetoresistance (AMR) of the bilayer thin film at different temperatures and magnetic fields. The obtained temperature dependence of A_{Py-Gd} and A_{Gd} exhibit a scaling power law with the magnetization of Gd. The critical field of spin-flop transition and its temperature dependence can also be directly obtained by this method. Additionally, the experimental results are well reproduced by micromagnetic simulations with the obtained parameters A_{Py-Gd} and A_{Gd}, which further confirms the reliability of this easily accessible technique.Comment: 5 pages, 4 figure

    A Fast Estimation of Initial Rotor Position for Low-Speed Free-Running IPMSM

    Get PDF

    The Influence of Social Comparison and Peer Group Size on Risky Decision-Making

    Get PDF
    This study explores the influence of different social reference points and different comparison group sizes on risky decision-making. Participants were presented with a scenario describing an exam, and presented with the opportunity of making a risky decision in the context of different information provided about the performance of their peers. We found that behavior was influenced, not only by comparison with peers, but also by the size of the comparison group. Specifically, the larger the reference group, the more polarized the behavior it prompted. In situations describing social loss, participants were led to make riskier decisions after comparing themselves against larger groups, while in situations describing social gain, they become more risk averse. These results indicate that decision making is influenced both by social comparison and the number of people making up the social reference group
    • …
    corecore