98 research outputs found

    A System for Generalized 3D Multi-Object Search

    Full text link
    Searching for objects is a fundamental skill for robots. As such, we expect object search to eventually become an off-the-shelf capability for robots, similar to e.g., object detection and SLAM. In contrast, however, no system for 3D object search exists that generalizes across real robots and environments. In this paper, building upon a recent theoretical framework that exploited the octree structure for representing belief in 3D, we present GenMOS (Generalized Multi-Object Search), the first general-purpose system for multi-object search (MOS) in a 3D region that is robot-independent and environment-agnostic. GenMOS takes as input point cloud observations of the local region, object detection results, and localization of the robot's view pose, and outputs a 6D viewpoint to move to through online planning. In particular, GenMOS uses point cloud observations in three ways: (1) to simulate occlusion; (2) to inform occupancy and initialize octree belief; and (3) to sample a belief-dependent graph of view positions that avoid obstacles. We evaluate our system both in simulation and on two real robot platforms. Our system enables, for example, a Boston Dynamics Spot robot to find a toy cat hidden underneath a couch in under one minute. We further integrate 3D local search with 2D global search to handle larger areas, demonstrating the resulting system in a 25m2^2 lobby area.Comment: 8 pages, 9 figures, 1 table. IEEE Conference on Robotics and Automation (ICRA) 202

    One-shot ultraspectral imaging with reconfigurable metasurfaces

    Full text link
    One-shot spectral imaging that can obtain spectral information from thousands of different points in space at one time has always been difficult to achieve. Its realization makes it possible to get spatial real-time dynamic spectral information, which is extremely important for both fundamental scientific research and various practical applications. In this study, a one-shot ultraspectral imaging device fitting thousands of micro-spectrometers (6336 pixels) on a chip no larger than 0.5 cm2^2, is proposed and demonstrated. Exotic light modulation is achieved by using a unique reconfigurable metasurface supercell with 158400 metasurface units, which enables 6336 micro-spectrometers with dynamic image-adaptive performances to simultaneously guarantee the density of spectral pixels and the quality of spectral reconstruction. Additionally, by constructing a new algorithm based on compressive sensing, the snapshot device can reconstruct ultraspectral imaging information (Δλ\Delta\lambda/λ\lambda~0.001) covering a broad (300-nm-wide) visible spectrum with an ultra-high center-wavelength accuracy of 0.04-nm standard deviation and spectral resolution of 0.8 nm. This scheme of reconfigurable metasurfaces makes the device can be directly extended to almost any commercial camera with different spectral bands to seamlessly switch the information between image and spectral image, and will open up a new space for the application of spectral analysis combining with image recognition and intellisense
    • …
    corecore