75 research outputs found

    Modelling and Forecasting Exchange Rate Volatility using High-frequency Data-Based on the US dollar

    Get PDF
    Abstract In this dissertation, we compare the performance of various models in predicting the USD dollar bilateral exchange rate volatility based on high-frequency data. Four exchange rates are selected, namely USD / EUR, USD / JPY, USD / GBP and USD / SEK. We also asses the forecasting performance of four models, including traditional volatility models (the intraday GARCH (1,1) model, the intraday FIGARCH model, the daily GARCH (1,1) model) and realized volatility model (the ARFIMA model). Then the out-of-sample forecast is done by using the rolling window approach. Moreover, four accuracy tests are applying to compare the forecasting ability of different models. The accuracy tests include the Mincer-Zarnowitz test, the loss functions, the DM and HLN-DM test and the SPA test. The empirical results show that the prediction performance of the intraday FIGARCH model and the ARFIMA model outperforms than other models, and the intraday FIGARCH model performs slightly superior to the ARFIMA model. Although the intraday GARCH (1,1) model performs well in some cases, it generally performs inferior to other models. Moreover, the results also indicate that capturing the long memory property of high-frequency data can effectively improve the predicting ability, and it is also found that the high-frequency USD dollar bilateral exchange rate exhibits similar characteristics to other high-frequency financial time series data. Key Words: USD dollar exchange rates, high-frequency data, the long memory property, volatility forecasting, accuracy tests, realized volatilit

    Efficient Private SCO for Heavy-Tailed Data via Clipping

    Full text link
    We consider stochastic convex optimization for heavy-tailed data with the guarantee of being differentially private (DP). Prior work on this problem is restricted to the gradient descent (GD) method, which is inefficient for large-scale problems. In this paper, we resolve this issue and derive the first high-probability bounds for the private stochastic method with clipping. For general convex problems, we derive excess population risks \Tilde{O}\left(\frac{d^{1/7}\sqrt{\ln\frac{(n \epsilon)^2}{\beta d}}}{(n\epsilon)^{2/7}}\right) and \Tilde{O}\left(\frac{d^{1/7}\ln\frac{(n\epsilon)^2}{\beta d}}{(n\epsilon)^{2/7}}\right) under bounded or unbounded domain assumption, respectively (here nn is the sample size, dd is the dimension of the data, β\beta is the confidence level and ϵ\epsilon is the private level). Then, we extend our analysis to the strongly convex case and non-smooth case (which works for generalized smooth objectives with Ho¨\ddot{\text{o}}lder-continuous gradients). We establish new excess risk bounds without bounded domain assumption. The results above achieve lower excess risks and gradient complexities than existing methods in their corresponding cases. Numerical experiments are conducted to justify the theoretical improvement

    Intention Aware Robot Crowd Navigation with Attention-Based Interaction Graph

    Full text link
    We study the problem of safe and intention-aware robot navigation in dense and interactive crowds. Most previous reinforcement learning (RL) based methods fail to consider different types of interactions among all agents or ignore the intentions of people, which results in performance degradation. In this paper, we propose a novel recurrent graph neural network with attention mechanisms to capture heterogeneous interactions among agents through space and time. To encourage longsighted robot behaviors, we infer the intentions of dynamic agents by predicting their future trajectories for several timesteps. The predictions are incorporated into a model-free RL framework to prevent the robot from intruding into the intended paths of other agents. We demonstrate that our method enables the robot to achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios. We successfully transfer the policy learned in simulation to a real-world TurtleBot 2i

    DRAGON: A Dialogue-Based Robot for Assistive Navigation with Visual Language Grounding

    Full text link
    Persons with visual impairments (PwVI) have difficulties understanding and navigating spaces around them. Current wayfinding technologies either focus solely on navigation or provide limited communication about the environment. Motivated by recent advances in visual-language grounding and semantic navigation, we propose DRAGON, a guiding robot powered by a dialogue system and the ability to associate the environment with natural language. By understanding the commands from the user, DRAGON is able to guide the user to the desired landmarks on the map, describe the environment, and answer questions from visual observations. Through effective utilization of dialogue, the robot can ground the user's free-form descriptions to landmarks in the environment, and give the user semantic information through spoken language. We conduct a user study with blindfolded participants in an everyday indoor environment. Our results demonstrate that DRAGON is able to communicate with the user smoothly, provide a good guiding experience, and connect users with their surrounding environment in an intuitive manner.Comment: Webpage and videos are at https://sites.google.com/view/dragon-wayfinding/hom

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14
    corecore