9 research outputs found

    Building a certifiable source device-independent quantum random number generator

    No full text
    Random numbers play an essential role in various fields, especially cryptography. This is because of the randomness and unpredictability that they provide. Due to the intrinsic randomness in quantum theory, the Quantum Random Number Generator (QRNG) is an excellent device to fulfil this requirement. However, QRNG is vulnerable to quantum attacks by eavesdroppers, which compromises the quality of the generated random numbers. Such attack includes tampering with the QRNG light source. With this consideration in mind, following the work of Drahi et al. on Source Device-Independent (SDI) QRNG, we construct a cost-effective SDI-QRNG that uses off-the-shelves and highly customizable components that could certify random numbers from an untrusted light source. In addition, after reviewing the SDI protocol, a generalised SDI protocol for unbalanced homodyne detection was proposed. Under this protocol, the randomness generation manages to produce certified raw random bits at a rate of 233kb/s from untrusted light. On the other hand, in the proof-of-concept of real-time random number extraction, a string of certified hashed random numbers is extracted at a rate of 1.20kb/s that is composably secure with failure probability ε = 5 × 10−10. Composable security is a crucial feature for any QRNG protocol, as it verifies that the random numbers extracted are quantum secure for use. Lastly, the SDI-QRNG demonstrated its security against quantum attacks via light injection by certifying fewer random numbers.Bachelor of Science in Physic

    Construction of cellulose-degrading microbial consortium and evaluation of their ability to degrade spent mushroom substrate

    No full text
    IntroductionSpent mushroom substrate (SMS) is a solid waste in agricultural production that contains abundant lignocellulosic fibers. The indiscriminate disposal of SMS will lead to significant resource waste and pollution of the surrounding environment.The isolation and screening of microorganisms with high cellulase degradation capacity is the key to improving SMS utilization.MethodsThe cellulose-degrading microbial consortiums were constructed through antagonism and enzyme activity test. The effect of microbial consortiums on lignocellulose degradation was systematically evaluated by SMS liquid fermentation experiments.ResultsIn this study, four strains of cellulose-degrading bacteria were screened, and F16, F, and F7 were identified as B. amyloliquefaciens, PX1 identified as B. velezensis. At the same time, two groups of cellulose efficient degrading microbial consortiums (PX1 + F7 and F16 + F) were successfully constructed. When SMS was used as the sole carbon source, their carboxymethyl cellulase (CMCase) activities were 225.16 and 156.63 U/mL, respectively, and the filter paper enzyme (FPase) activities were 1.91 and 1.64 U/mL, respectively. PX1 + F7 had the highest degradation rate of hemicellulose and lignin, reaching 52.96% and 52.13%, respectively, and the degradation rate of F16 + F was as high as 56.30%. Field emission scanning electron microscopy (FESEM) analysis showed that the surface microstructure of SMS changed significantly after microbial consortiums treatment, and the change of absorption peak in Fourier transform infrared spectroscopy (FTIR) and the increase of crystallinity in X-ray diffraction (XRD) confirmed that the microbial consortiums had an actual degradation effect on SMS. The results showed that PX1 + F7 and F16 + F could effectively secrete cellulase and degrade cellulose, which had practical significance for the degradation of SMS.DiscussionIn this study, the constructed PX1 + F7 and F16 + F strains can effectively secrete cellulase and degrade cellulose, which holds practical significance in the degradation of SMS. The results can provide technical support for treating high-cellulose solid waste and for the comprehensive utilization of biomass resources

    Molecular strategy for the direct detection and identification of human enteroviruses in clinical specimens associated with hand, foot and mouth disease.

    No full text
    BackgroundDiseases caused by human enteroviruses (EVs) are a major global public health problem. Thus, the effective diagnosis of all human EVs infections and the monitoring of epidemiological and ecological dynamic changes are urgently needed.MethodsBased on two comprehensive virological surveillance systems of hand, foot and mouth disease (HFMD), real-time PCR and nested RT-PCR (RT-snPCR) methods based on the enteroviral VP1, VP4-VP2 and VP4 regions were designed to directly detect all human EVs serotypes in clinical specimens.ResultsThe results showed that the proposed serotyping strategy exhibit very high diagnostic efficiency (Study 1: 99.9%; Study 2: 89.5%), and the variance between the study was due to inclusion of the specific Coxsackie virus A6 (CVA6) real-time RT-PCR and VP4 RT-snPCR in Study 1 but not Study 2. Furthermore, only throat swabs were collected and analyzed in Study 2, whereas in Study 1, if a specific EV serotype was not identified in the primary stool sample, other sample types (rectal swab and throat swab) were further tested where available. During the study period from 2013 to 2018, CVA6 became one of the main HFMD causative agents, whereas the level of enterovirus A71 (EV-A71) declined in 2017.ConclusionThe findings of this study demonstrate the appropriate application of PCR methods and the combination of biological sample types that are useful for etiological studies and propose a molecular strategy for the direct detection of human EVs in clinical specimens associated with HFMD

    Population based hospitalization burden of laboratory-confirmed hand, foot and mouth disease caused by multiple enterovirus serotypes in Southern China.

    No full text
    BACKGROUND:Hand, foot and mouth disease (HFMD) is spread widely across Asia, and the hospitalization burden is currently not well understood. Here, we estimated serotype-specific and age-specific hospitalization rates of HFMD in Southern China. METHODS:We enrolled pediatric HFMD patients admitted to 3/3 county-level hospitals, and 3/23 township-level hospitals in Anhua county, Hunan (CN). Samples were collected to identify enterovirus serotypes by RT-PCRs between October 2013 and September 2016. Information on other eligible, but un-enrolled, patients were retrospectively collected from the same six hospitals. Monthly numbers of all-cause hospitalizations were collected from each of the 23 township-level hospitals to extrapolate hospitalizations associated with HFMD among these. RESULTS:During the three years, an estimated 3,236 pediatric patients were hospitalized with lab-confirmed HFMD, and among these only one case was severe. The mean hospitalization rate was 660 (95% CI: 638-684) per 100,000 person-years for lab-confirmed HFMD, with higher rates among CV-A16 and CV-A6 associated HFMD (213 vs 209 per 100,000 person-years), and lower among EV-A71, CV-A10 and other enterovirus associated HFMD (134, 39 and 66 per 100,000 person-years respectively, p<0.001). Children aged 12-23 months had the highest hospitalization rates (3,594/100,000 person-years), followed by those aged 24-35 months (1,828/100,000 person-years) and 6-11 months (1,572/100,000 person-years). Compared with other serotypes, CV-A6-associated hospitalizations were evident at younger ages. CONCLUSIONS:Our study indicates a substantial hospitalization burden associated with non-severe HFMD in a rural county in southern China. Future mitigation policies should take into account the disease burden identified, and optimize interventions for HFMD

    The transfer of maternal antibodies and dynamics of maternal and natural infection-induced antibodies against coxsackievirus A16 in Chinese children 0–13 years of age: a longitudinal cohort study

    No full text
    International audienceBackground A major hand-foot-and-mouth disease (HFMD) pathogen, coxsackievirus A16 (CVA16), has predominated in several of the last 10 years and caused the largest number of HFMD outbreaks between 2011 and 2018 in China. We evaluated the efficacy of maternal anti-CVA16 antibody transfer via the placenta and explored the dynamics of maternal and natural infection-induced neutralizing antibodies in children. Methods Two population-based longitudinal cohorts in southern China were studied during 2013–2018. Participants were enrolled in autumn 2013, including 2475 children aged 1–9 years old and 1066 mother-neonate pairs, and followed for 3 years. Blood/cord samples were collected for CVA16-neutralizing antibody detection. The maternal antibody transfer efficacy, age-specific seroprevalence, geometric mean titre (GMT) and immune response kinetics were estimated. Results The average maternal antibody transfer ratio was 0.88 (95% CI 0.80–0.96). Transferred maternal antibody levels declined rapidly (half-life: 2.0 months, 95% CI 1.9–2.2 months). The GMT decayed below the positive threshold (8) by 1.5 months of age. Due to natural infections, it increased above 8 after 1.4 years and reached 32 by 5 years of age, thereafter dropping slightly. Although the average duration of maternal antibody-mediated protection was < 3 months, the duration extended to 6 months on average for mothers with titres ≥ 64. Conclusions Anti-CVA16 maternal antibodies are efficiently transferred to neonates, but their levels decline quickly. Children aged 0–5 years are the main susceptible population and should be protected by CVA16 vaccination, with the optimal vaccination time between 1.5 months and 1 year of age

    Seroepidemiology of enterovirus A71 infection in prospective cohort studies of children in southern China, 2013-2018

    No full text
    International audienceEnterovirus A71 (EV-A71)–related hand, foot, and mouth disease (HFMD) imposes a substantial clinical burden in the Asia Pacific region. To inform policy on the introduction of the EV-A71 vaccine into the National Immunization Programme, we investigated the seroepidemiological characteristics of EV-A71 in two prospective cohorts of children in southern China conducted between 2013 and 2018. Our results show that maternal antibody titres declined rapidly in neonates, with over half becoming susceptible to EV-A71 at 1 month of age. Between 6 months and 2 years of age, over 80% of study participants were susceptible, while one third remained susceptible at 5 years old. The highest incidence of EV-A71 infections was observed in children aged 5-6 months. Our findings support EV-A71 vaccination before 6 months for birth cohorts in southern China, potentially with a one-time catch-up vaccination for children 6 months-5 years old. More regionally representative longitudinal seroepidemiological studies are needed to further validate these findings
    corecore