5 research outputs found
Elevated circulating and placental SPINT2 is associated with placental dysfunction
Biomarkers for placental dysfunction are currently lacking. We recently identified SPINT1 as a novel biomarker; SPINT2 is a functionally related placental protease inhibitor. This study aimed to characterise SPINT2 expression in placental insufficiency. Circulating SPINT2 was assessed in three prospective cohorts, collected at the following: (1) term delivery (n = 227), (2) 36 weeks (n = 364), and (3) 24–34 weeks’ (n = 294) gestation. SPINT2 was also measured in the plasma and placentas of women with established placental disease at preterm (p = 0.028; median = 2233 pg/mL vs. controls, median = 1644 pg/mL), or delivered a small-for-gestational-age infant (p = 0.002; median = 2109 pg/mL vs. controls, median = 1614 pg/mL). SPINT2 was elevated in the placentas of patients who required delivery for preterm preeclampsia (p = 0.025). Though inflammatory cytokines had no effect, hypoxia increased SPINT2 in cytotrophoblast stem cells, and its expression was elevated in the placental labyrinth of growth-restricted rats. These findings suggest elevated SPINT2 is associated with placental insufficiency
Circulating syndecan-1 is reduced in pregnancies with poor fetal growth and its secretion regulated by matrix metalloproteinases and the mitochondria
Fetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks' gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24-34 weeks' gestation); two prospective cohorts collected on the day of delivery (36 + 3-41 + 3 weeks' gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses
Can single-cell and spatial omics unravel the pathophysiology of pre-eclampsia?
Pre-eclampsia is a leading cause of maternal and fetal morbidity and mortality. Characterised by the onset of hypertension and proteinuria in the second half of pregnancy, it can lead to maternal end-organ injury such as cerebral ischemia and oedema, pulmonary oedema and renal failure, and potentially fatal outcomes for both mother and fetus. The causes of the different maternal end-organ phenotypes of pre-eclampsia and why some women develop pre-eclampsia condition early in pregnancy have yet to be elucidated. Omics methods include proteomics, genomics, metabolomics, transcriptomics. These omics techniques, previously mostly used on bulk tissue and individually, are increasingly available at a single cellular level and can be combined with each other. Multi-omics techniques on a single-cell or spatial level provide us with a powerful tool to understand the pathophysiology of pre-eclampsia. This review will explore the status of omics methods and how they can and could contribute to understanding the pathophysiology of pre-eclampsia