17,221 research outputs found
A low-frequency radio survey of the planets with RAE-2
Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025 to 13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE-2
The solar elogation distribution of low frequency radio bursts
Over 500 days of low frequency (less than 5 MHz) radio observations from the IMP-6 spacecraft were accumulated to produce a two dimensional map (frequency versus elongation) of solar type III burst occurrences. This map indicates that most solar bursts are emitted at the second harmonic of the plasma frequency rather than the fundamental. The map also shows that the solar wind electron density varies
A radiometric Bode's Law: Predictions for Uranus
The magnetospheres of three planets, Earth, Jupiter, and Saturn, are known to be sources of intense, nonthermal radio bursts. The emissions from these sources undergo pronounced long term intensity fluctuations that are caused by the solar wind interaction with the magnetosphere of each planet. Determinations by spacecraft of the low frequency radio spectra and radiation beam geometry now permit a reliable assessment of the overall efficiency of the solar wind in stimulating these emissions. Earlier estimates of how magnetospheric radio output scales with the solar wind energy input must be revised greatly, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. The formulation of a radiometric Bode's Law from which a planet's magnetic moment is estimated from its radio emission output is presented. Applying the radiometric scaling law to Uranus, the low-frequency radio power is likely to be measured by the Voyager 2 spacecraft as it approaches this planet
Narrow-band Jovian Kilometric Radiation: a New Radio Component
A new component of Jupiter's radio spectrum is investigated. The component emits in a very narrow bandwidth (less than or equal to 40 kHz) near 100 kHz. Its waveform is a very smooth and gradual rise and subsequent fall in intensity, usually over two hours. The emission is polarized with left hand polarization associated with the Jovian northern magnetic hemisphere and right hand with the south. The emissions deviation from a strict system 3 rotation period repetition rate is examined. The emission source of the narrow band component which rotates 3 to 5 percent slower than all other forms of Jovian radio emission is determined from propagation considerations, coupled with the observed lack of corotation, to a source region near the equatorial plane at the outer edge of the Io plasma torus. The narrow band KOM (nKOM) form is examined using observations from the PRA instrument. The spectrum and occurrence statistics are described and contrasted with the tapered or broadband KOM (bKOM) characteristics
The Occurence Rate, Polarization Character, and Intensity of Broadband Jovian Kilometric Radiation
The major observational features of one new component of Jupiter's radio emission spectrum, the broadband kilometer-wavelenth radiation or bKOM are described. The Voyager planetary radio astronomy experiments reveal that the overall occurrence morphology, total power, and polarization character of bKOM are strong functions of the latitude and/or local time geometry of the observations. The post-encounter data show a decline in the mean occurrence rates and power level of bKOM and, in particular, a depletion in the occurrence rate at those same longitudes where the detection rate is a maximum before encounter. Additionally, the polarization sense undergoes a permanent reversal in sign after encounter, whereas the time-averaged wave axial ratio and degrees of polarization remain relatively unchanged. No evidence of any control by Io is found. The strong dependence of the morphology on local time suggests a source whose beam is nearly fixed relative to the Jupiter-sun line
Saturnian kilometric radiation: Source locations
The surce locations of both polariation components of the saturn kilometer wavelength radiation were deduced using Voyager 1 and Voyager 2 planetary radio astronomy data and assumptions about radiation beam geometry. Radio source footprints were compared with the surface locations of saturns ultraviolet aurorae, its polar cap boundary, and its polar cusp
Voyager measurement of the rotation period of Saturn's magnetic field
Saturn's radio rotation period was determined using measurements made by the planetary radio astronomy experiment onboard the Voyager spacecraft. The sidereal period deduced, 10 hr 39 min 24 sec ? 7 sec, is within the 10 hr to 11 hr range of optical periods derived from a century of atmospheric spot and Doppler spectroscopy observations. The radio rotation period is presumably that of the planet's magnetic field. A provisional Saturn longitude convention is proposed and equations are provided to compute a longitude ephemeris and to transform between the proposed system and the (10 hr 14 min) system used for the Pioneer 11/Saturn encounter. The degree of longitude smearing which could result over the long term from the merging of data sets organized in this system is evaluated. No evidence of control of the radio emission by any of Saturn's satellites was found
Evidence for an Io plasma torus influence on high-latitude Jovian radio emission
We report the discovery with the Ulysses unified radio and plasma wave (URAP) instrument of features in the Jovian hectometer (HOM) wavelength radio emission spectrum which recur with a period about 2–4% longer than the Jovian System III rotation period. We conclude that the auroral HOM emissions are periodically blocked from “view” by regions in the torus of higher than average density and that these regions rotate more slowly than System III and persist for considerable intervals of time. We have reexamined the Voyager planetary radio astronomy (PRA) data taken during the flybys in 1979 and have found similar features in the HOM spectrum. Contemporaneous observations by Brown (1994) show an [SII] emission line enhancement in the Io plasma torus that rotates more slowly than System III by the same amount as the HOM feature
Results of long-term synoptic monitoring of Jupiter's decametric radiation
Results of the analysis of the large, homogeneous set of measurements of Jupiter's emission at 16.7 and 22.2 MHz for the apparitions during the period 1966-1974 were presented. An update of the radio rotation period determination which includes provision for beaming effects due to variations in the Jovicentric declination of the earth was presented. Some estimates of the magnitude of possible long-term variations in the rotation period were also discussed. The data clearly shows the Io-independent emission features associated with the System III central meridian longitudes of all three major Io-related source regions. There is also some evidence for heretofore unrecognized Io-related emission features which are apparently independent of the central meridian longitude. The possibility of three kinds of emission are suggested: (1) Io-stimulated, sharply beamed emission, (2) Io-independent, sharply beamed emission, and (3) Io-stimulated, broadly beamed emission
- …