8,479 research outputs found

    Inflationary paradigm after Planck 2013

    Full text link
    Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (Ωk=1Ω\Omega_k = 1 - \Omega) and the spectral tilt of primordial curvature perturbations (ns1=dlnPR/dlnkn_s - 1 = d \ln {\cal P}_{\cal R} / d \ln k), among others---predictions that match the latest observations from the {\it Planck} satellite to very good precision. In the light of data from {\it Planck} as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.Comment: 11 pages, no figures; added references, and brief additions to Footnote 1, Section VI, and the Acknowledgment

    Relativistic Corrections to Nonrelativistic Effective Field Theories

    Get PDF
    In this paper we develop a formalism for studying the nonrelativistic limit of relativistic field theories in a systematic way. By introducing a simple, nonlocal field redefinition, we transform a given relativistic theory, describing a real, self-interacting scalar field, into an equivalent theory, describing a complex scalar field that encodes at each time both the original field and its conjugate momentum. Our low-energy effective theory incorporates relativistic corrections to the kinetic energy as well as the backreaction of fast-oscillating terms on the behavior of the dominant, slowly varying component of the field. Possible applications of our new approach include axion dark matter, though the methods developed here should be applicable to the low-energy limits of other field theories as well.Comment: 31pp. References added, and 3 appendices added, showing (a) how to implement the field redefinition as a canonical transformation, (b) how to develop the effective field theory using a local field redefinition, and (c) how to use a further field redefinition to compare our results with those of Mukaida, Takimoto, and Yamad

    Inflationary Cosmology: Exploring the Universe from the Smallest to the Largest Scales

    Full text link
    Understanding the behavior of the universe at large depends critically on insights about the smallest units of matter and their fundamental interactions. Inflationary cosmology is a highly successful framework for exploring these interconnections between particle physics and gravitation. Inflation makes several predictions about the present state of the universe -- such as its overall shape, large-scale smoothness, and smaller-scale structure -- which are being tested to unprecedented accuracy by a new generation of astronomical measurements. The agreement between these predictions and the latest observations is extremely promising. Meanwhile, physicists are busy trying to understand inflation's ultimate implications for the nature of matter, energy, and spacetime.Comment: 16 pages, 4 figures, written for "Einstein's Legacy" issue of Science magazin

    Wavelet Methods in the Relativistic Three-Body Problem

    Full text link
    In this paper we discuss the use of wavelet bases to solve the relativistic three-body problem. Wavelet bases can be used to transform momentum-space scattering integral equations into an approximate system of linear equations with a sparse matrix. This has the potential to reduce the size of realistic three-body calculations with minimal loss of accuracy. The wavelet method leads to a clean, interaction independent treatment of the scattering singularities which does not require any subtractions.Comment: 14 pages, 3 figures, corrected referenc

    Electromagnetic vortex lines riding atop null solutions of the Maxwell equations

    Full text link
    New method of introducing vortex lines of the electromagnetic field is outlined. The vortex lines arise when a complex Riemann-Silberstein vector (E+iB)/2({\bm E} + i{\bm B})/\sqrt{2} is multiplied by a complex scalar function ϕ\phi. Such a multiplication may lead to new solutions of the Maxwell equations only when the electromagnetic field is null, i.e. when both relativistic invariants vanish. In general, zeroes of the ϕ\phi function give rise to electromagnetic vortices. The description of these vortices benefits from the ideas of Penrose, Robinson and Trautman developed in general relativity.Comment: NATO Workshop on Singular Optics 2003 To appear in Journal of Optics

    Electromagnetic inertia, reactive energy, and energy flow velocity

    Full text link
    In a recent paper titled "Coherent electromagnetic wavelets and their twisting null congruences," I defined the local inertia density (I), reactive energy density (R), and energy flow velocity (v) of an electromagnetic field. These are the field equivalents of the mass, rest energy, and velocity of a relativistic particle. Thus R and I are Lorentz-invariant and |v|<=c, with equality if and only if R=0. The exceptional fields with |v|=c were called "coherent" because their energy moves in complete harmony with the field, leaving no inertia or reactive energy behind. Generic electromagnetic fields become coherent only in the far zone. Elsewhere, their energy flows at speeds |v|<c. The purpose of this paper is to confirm and clarify this statement by studying the local energy flow in several common systems: a time-harmonic electric dipole field, a time-dependent electric dipole field, and a standing plane wave. For these fields, the energy current (Poynting vector) is too weak to carry away all of the energy, thus leaving reactive energy in its wake. For the time-dependent dipole field, we find that the energy can flow both transversally and inwards, back to the source. Neither of these phenomena show up in the usual computation of the energy transport velocity which considers only averages over one period in the time-harmonic case.Comment: 20 pages, 7 figure

    Maxwell Fields and Shear-Free Null Geodesic Congruences

    Full text link
    We study and report on the class of vacuum Maxwell fields in Minkowski space that possess a non-degenerate, diverging, principle null vector field (null eigenvector field of the Maxwell tensor) that is tangent to a shear-free null geodesics congruence. These congruences can be either surface forming (the tangent vectors proportional to gradients) or not, i.e., the twisting congruences. In the non-twisting case, the associated Maxwell fields are precisely the Lienard-Wiechert fields, i.e., those Maxwell fields arising from an electric monopole moving on an arbitrary worldline. The null geodesic congruence is given by the generators of the light-cones with apex on the world-line. The twisting case is much richer, more interesting and far more complicated. In a twisting subcase, where our main interests lie, it can be given the following strange interpretation. If we allow the real Minkowski space to be complexified so that the real Minkowski coordinates x^a take complex values, i.e., x^a => z^a=x^a+iy^a with complex metric g=eta_abdz^adz^b, the real vacuum Maxwell equations can be extended into the complex and rewritten as curlW =iWdot, divW with W =E+iB. This subcase of Maxwell fields can then be extended into the complex so as to have as source, a complex analytic world-line, i.e., to now become complex Lienard-Wiechart fields. When viewed as real fields on the real Minkowski space, z^a=x^a, they possess a real principle null vector that is shear-free but twisting and diverging. The twist is a measure of how far the complex world-line is from the real 'slice'. Most Maxwell fields in this subcase are asymptotically flat with a time-varying set of electric and magnetic moments, all depending on the complex displacements and the complex velocities.Comment: 3

    Interplay between disorder, quantum and thermal fluctuations in ferromagnetic alloys: The case of UCu2Si(2-x)Ge(x)

    Full text link
    We consider, theoretically and experimentally, the effects of structural disorder, quantum and thermal fluctuations in the magnetic and transport properties of certain ferromagnetic alloys.We study the particular case of UCu2Si(2-x)Ge(x). The low temperature resistivity, rho(T,x), exhibits Fermi liquid (FL) behavior as a function of temperature T for all values of x, which can be interpreted as a result of the magnetic scattering of the conduction electrons from the localized U spins. The residual resistivity, rho(0,x), follows the behavior of a disordered binary alloy. The observed non-monotonic dependence of the Curie temperature, Tc(x), with x can be explained within a model of localized spins interacting with an electronic bath whose transport properties cross-over from ballistic to diffusive regimes. Our results clearly show that the Curie temperature of certain alloys can be enhanced due to the interplay between quantum and thermal fluctuations with disorder.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    One-dimensional transport in polymer nanofibers

    Full text link
    We report our transport studies in quasi one-dimensional (1D) conductors - helical polyacetylene fibers doped with iodine and the data analysis for other polymer single fibers and tubes. We found that at 30 K < T < 300 K the conductance and the current-voltage characteristics follow the power law: G(T) ~ T^alpha with alpha ~ 2.2-7.2 and I(V) ~ V^betta with betta ~ 2-5.7. Both G(T) and I(V) show the features characteristic of 1D systems such as Luttinger liquid or Wigner crystal. The relationship between our results and theories for tunneling in 1D systems is discussed.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Letter

    Integrated Diamond Optics for Single Photon Detection

    Full text link
    Optical detection of single defect centers in the solid state is a key element of novel quantum technologies. This includes the generation of single photons and quantum information processing. Unfortunately the brightness of such atomic emitters is limited. Therefore we experimentally demonstrate a novel and simple approach that uses off-the-shelf optical elements. The key component is a solid immersion lens made of diamond, the host material for single color centers. We improve the excitation and detection of single emitters by one order of magnitude, as predicted by theory.Comment: 10 pages, 3 figure
    corecore