12,358 research outputs found
Making electromagnetic wavelets
Electromagnetic wavelets are constructed using scalar wavelets as
superpotentials, together with an appropriate polarization. It is shown that
oblate spheroidal antennas, which are ideal for their production and reception,
can be made by deforming and merging two branch cuts. This determines a unique
field on the interior of the spheroid which gives the boundary conditions for
the surface charge-current density necessary to radiate the wavelets. These
sources are computed, including the impulse response of the antenna.Comment: 29 pages, 4 figures; minor corrections and addition
Chiral -exchange NN-potentials: Results for diagrams proportional to g_A^4 and g_A^6
We calculate in (two-loop) chiral perturbation theory the local NN-potentials
generated by the three-pion exchange diagrams proportional to g_A^4 and g_A^6.
Surprisingly, we find that the total isoscalar central -exchange
potential vanishes identically. The individually largest -exchange
potentials are of isoscalar spin-spin, isovector central and isoscalar tensor
type. For these potentials simple analytical expressions can be given. The
strength of these dominant -exchange potentials at r=1.0 fm is 4.6 MeV,
2.9 MeV and 1.4 MeV, respectively. Furthermore, we observe that the spin-spin
and tensor potentials due to the diagrams proportional to g_A^6 do not exist in
the infinite nucleon mass limit.Comment: 8 pages, 5 figure
Violation of the Leggett-Garg Inequality in Neutrino Oscillations
The Leggett-Garg inequality, an analogue of Bell's inequality involving
correlations of measurements on a system at different times, stands as one of
the hallmark tests of quantum mechanics against classical predictions. The
phenomenon of neutrino oscillations should adhere to quantum-mechanical
predictions and provide an observable violation of the Leggett-Garg inequality.
We demonstrate how oscillation phenomena can be used to test for violations of
the classical bound by performing measurements on an ensemble of neutrinos at
distinct energies, as opposed to a single neutrino at distinct times. A study
of the MINOS experiment's data shows a greater than violation over
a distance of 735 km, representing the longest distance over which either the
Leggett-Garg inequality or Bell's inequality has been tested.Comment: Updated to match published version. 6 pages, 2 figure
Exact calculation of three-body contact interaction to second order
For a system of fermions with a three-body contact interaction the
second-order contributions to the energy per particle are
calculated exactly. The three-particle scattering amplitude in the medium is
derived in closed analytical form from the corresponding two-loop rescattering
diagram. We compare the (genuine) second-order three-body contribution to with the second-order term due to the density-dependent
effective two-body interaction, and find that the latter term dominates. The
results of the present study are of interest for nuclear many-body calculations
where chiral three-nucleon forces are treated beyond leading order via a
density-dependent effective two-body interaction.Comment: 9 pages, 6 figures, to be published in European Journal
Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector terms
We extend a recent calculation of the nuclear energy density functional in
the framework of chiral perturbation theory by computing the isovector surface
and spin-orbit terms: (\vec \nabla \rho_p- \vec \nabla \rho_n)^2 G_d(\rho)+
(\vec \nabla \rho_p- \vec \nabla \rho_n)\cdot(\vec J_p-\vec J_n)
G_{so(\rho)+(\vec J_p-\vec J_n)^2 G_J(\rho) pertaining to different proton and
neutron densities. Our calculation treats systematically the effects from
-exchange, iterated -exchange, and irreducible -exchange with
intermediate -isobar excitations, including Pauli-blocking corrections
up to three-loop order. Using an improved density-matrix expansion, we obtain
results for the strength functions , and
which are considerably larger than those of phenomenological Skyrme forces.
These (parameter-free) predictions for the strength of the isovector surface
and spin-orbit terms as provided by the long-range pion-exchange dynamics in
the nuclear medium should be examined in nuclear structure calculations at
large neutron excess.Comment: 12 pages, 5 figure
Chiral 3-exchange NN-potentials: Results for dominant next-to-leading order contributions
We calculate in (two-loop) chiral perturbation theory the local NN-potentials
generated by the three-pion exchange diagrams with one insertion from the
second order chiral effective pion-nucleon Lagrangian proportional to the
low-energy constants . The resulting isoscalar central potential
vanishes identically. In most cases these -exchange potentials are larger
than the ones generated by the diagrams involving only leading order vertices
due to the large values of (which mainly represent virtual
-excitation). A similar feature has been observed for the chiral
-exchange. We also give suitable (double-integral) representations for
the spin-spin and tensor potentials generated by the leading-order diagrams
proportional to involving four nucleon propagators. In these cases the
Cutkosky rule cannot be used to calculate the spectral-functions in the
infinite nucleon mass limit since the corresponding mass-spectra start with a
non-vanishing value at the -threshold. Altogether, one finds that chiral
-exchange leads to small corrections in the region fm where
- and chiral -exchange alone provide a very good strong NN-force as
shown in a recent analysis of the low-energy pp-scattering data-base.Comment: 11 pages, 7 figures, to be published in The Physical Review
Recommended from our members
The Cord Approach to Extensible Concurrency Control
Database management systems (DBMSs) have been increasingly used for advanced application domains, such as software development environments, workflow management systems, computer-aided design and manufacturing, and managed healthcare. In these domains, the standard correctness model of serializability is often too restrictive. The authors introduce the notion of a concurrency control language (CCL) that allows a database application designer to specify concurrency control policies to tailor the behavior of a transaction manager. A well-crafted set of policies defines an extended transaction model. The necessary semantic information required by the CCL run-time engine is extracted from a task manager, a (logical) module by definition included in all advanced applications. This module stores task models that encode the semantic information about the transactions submitted to the DBMS. They have designed a rule-based CCL, called CORD, and have implemented a run-time engine that can be hooked to a conventional transaction manager to implement the sophisticated concurrency control required by advanced database applications. They present an architecture for systems based on CORD and describe how they integrated the CORD engine with the Exodus Storage Manager to implement altruistic locking
Incremental Process Support for Code Reengineering
Reengineering a large code base can be a monumental task, and the situation becomes even worse if the code is concomitantly being modified. For the past two years, we have been using the Marvel process centered environment (PCE) for all of our software development and are currently using it to develop the Oz PCE (Marvel's successor). Towards this effort, we are reengineering Oz's code base to isolate the process engine, transaction manager, and object management system as separate components that can be mixed and matched in arbitrary systems. In this paper, we show how a PCE can guide and assist teams of users in carrying out code reengineering while allowing them to continue their normal code development. The key features to this approach are its incremental nature and the ability of the PCE to automate most of the tasks necessary to maintain the consistency of the code base
An Architecture for Integrating Concurrency Control into Environment Frameworks
Research in layered and componentized systems shows the benefit of dividing the responsibility of services into separate components. It is still an unresolved issue, however, how a system can be created from a set of existing (independently developed) components. This issue of integration is of immense concern to software architects since a proper solution would reduce duplicate implementation efforts and promote component reuse. In this paper we take a step towards this goal within the domain of software development environments (SDEs) by showing how to integrate an external concurrency control component, called Pern, with environment frameworks. We discuss two experiments where we integrated Pern with Oz, a multi-site, decentralized process centered environment, and Process WEAVER, a commercial process server. We introduce an architecture for retrofitting an external concurrency control component into an environment
- …