18,915 research outputs found

    Localization versus subradiance in three-dimensional scattering of light

    Full text link
    We study the scattering modes of light in a three-dimensional disordered medium, in the scalar approximation and above the critical density for Anderson localization. Localized modes represent a minority of the total number of modes, even well above the threshold density, whereas spatially extended subradiant modes predominate. For specific energy ranges however, almost all modes are localized, yet adjusting accordingly the probe frequency does not allow to address these only in the regime accessible numerically. Finally, their lifetime is observed to be dominated by finite-size effects, and more specifically by the ratio of the localization length to their distance to the system boundaries.Comment: Add figure comparing localization percentage via frequency, fixed text, addition of Ioffe-Regel criterion limits, figure axis were normalize

    Making electromagnetic wavelets

    Full text link
    Electromagnetic wavelets are constructed using scalar wavelets as superpotentials, together with an appropriate polarization. It is shown that oblate spheroidal antennas, which are ideal for their production and reception, can be made by deforming and merging two branch cuts. This determines a unique field on the interior of the spheroid which gives the boundary conditions for the surface charge-current density necessary to radiate the wavelets. These sources are computed, including the impulse response of the antenna.Comment: 29 pages, 4 figures; minor corrections and addition

    The cosomological evolution of the environments of powerful radio galaxies

    Full text link
    We present the results from the analysis of 26 extragalactic radio sources of type FRII which were observed with the VLA at 5 GHz and around the 1.4 GHz band. The sources were selected to have redshifts in the range 0.3<z<1.3 0.3<z<1.3, radio powers between 6.9×1026WHz−1<P151MHz<1.3×1028WHz−16.9 \times 10^{26} {\rm WHz^{-1}}<P_{151 {\rm MHz}}<1.3 \times 10^{28} {\rm WHz^{-1}} and angular size θ≥10′′\theta \ge 10''. We found that the depolarisation and the rms variations in the rotation measure increased with redshift. The flux values obtained from the observations were used to derive by means of analytical modelling the jet--power, density of the central environment, age of the source and its lobe pressure and the results were then compared with the observations. We find no significant correlations with the density parameter suggesting that the depolarisation and the rms variations in the rotation measure are indicative of the environment becoming more disordered rather than denser. The age and size of a source are correlated and both were found to be independent of redshift and radio--power. Jet--power strongly correlated with the radio--power. The lobe pressure was found to be anti--correlated with size which could explain why there are no sources beyond a few Mpc in size. We found no significant correlation between size and density which demonstrates that the sample is a fair representation of the population.Comment: 2 pages, Cozumel AGN 2003 conference proceeding

    Fluctuation properties of laser light after interaction with an atomic system: comparison between two-level and multilevel atomic transitions

    Get PDF
    The complex internal atomic structure involved in radiative transitions has an effect on the spectrum of fluctuations (noise) of the transmitted light. A degenerate transition has different properties in this respect than a pure two-level transition. We investigate these variations by studying a certain transition between two degenerate atomic levels for different choices of the polarization state of the driving laser. For circular polarization, corresponding to the textbook two-level atom case, the optical spectrum shows the characteristic Mollow triplet for strong laser drive, while the corresponding noise spectrum exhibits squeezing in some frequency ranges. For a linearly polarized drive, corresponding to the case of a multilevel system, additional features appear in both optical and noise spectra. These differences are more pronounced in the regime of a weakly driven transition: whereas the two-level case essentially exhibits elastic scattering, the multilevel case has extra noise terms related to spontaneous Raman transitions. We also discuss the possibility to experimentally observe these predicted differences for the commonly encountered case where the laser drive has excess noise in its phase quadrature.Comment: New version. Accepted for publication in Physical Review

    Cooperative effects and disorder: A scaling analysis of the spectrum of the effective atomic Hamiltonian

    Full text link
    We study numerically the spectrum of the non-Hermitian effective Hamiltonian that describes the dipolar interaction of a gas of N≫1N\gg 1 atoms with the radiation field. We analyze the interplay between cooperative effects and disorder for both scalar and vectorial radiation fields. We show that for dense gases, the resonance width distribution follows, both in the scalar and vectorial cases, a power law P(Γ)∼Γ−4/3P(\Gamma) \sim \Gamma^{-4/3} that originates from cooperative effects between more than two atoms. This power law is different from the P(Γ)∼Γ−1 P(\Gamma) \sim \Gamma^{-1} behavior, which has been considered as a signature of Anderson localization of light in random systems. We show that in dilute clouds, the center of the energy distribution is described by Wigner's semicircle law in the scalar and vectorial cases. For dense gases, this law is replaced in the vectorial case by the Laplace distribution. Finally, we show that in the scalar case the degree of resonance overlap increases as a power law of the system size for dilute gases, but decays exponentially with the system size for dense clouds.Comment: 11 pages, 12 figure

    Ultrafast coherent Raman spectroscopy

    Get PDF

    Low and high intensity velocity selective coherent population trapping in a two-level system

    Get PDF
    An experimental investigation is made of sub-recoil cooling by velocity selective coherent population trapping in a two-level system in Sr. The experiment is carried out using the narrow linewidth intercombination line at 689 nm. Here, the ratio between the recoil shift and the linewidth is as high as 0.64. We show that, on top of a broader momentum profile, subrecoil features develop, whose amplitude is strongly dependent on the detuning from resonance. We attribute this structure to a velocity selective coherent population trapping mechanism. We also show that the population trapping phenomenon leads to complex momentum profiles in the case of highly saturated transitions, displaying a multitude of subrecoil features at integer multiples of the recoil momentum.Comment: 6 pages and 7 figure
    • …
    corecore