17,626 research outputs found

    Making electromagnetic wavelets

    Full text link
    Electromagnetic wavelets are constructed using scalar wavelets as superpotentials, together with an appropriate polarization. It is shown that oblate spheroidal antennas, which are ideal for their production and reception, can be made by deforming and merging two branch cuts. This determines a unique field on the interior of the spheroid which gives the boundary conditions for the surface charge-current density necessary to radiate the wavelets. These sources are computed, including the impulse response of the antenna.Comment: 29 pages, 4 figures; minor corrections and addition

    Low and high intensity velocity selective coherent population trapping in a two-level system

    Get PDF
    An experimental investigation is made of sub-recoil cooling by velocity selective coherent population trapping in a two-level system in Sr. The experiment is carried out using the narrow linewidth intercombination line at 689 nm. Here, the ratio between the recoil shift and the linewidth is as high as 0.64. We show that, on top of a broader momentum profile, subrecoil features develop, whose amplitude is strongly dependent on the detuning from resonance. We attribute this structure to a velocity selective coherent population trapping mechanism. We also show that the population trapping phenomenon leads to complex momentum profiles in the case of highly saturated transitions, displaying a multitude of subrecoil features at integer multiples of the recoil momentum.Comment: 6 pages and 7 figure

    Global stability analysis of birhythmicity in a self-sustained oscillator

    Full text link
    We analyze global stability properties of birhythmicity in a self-sustained system with random excitations. The model is a multi-limit cycles variation of the van der Pol oscillatorintroduced to analyze enzymatic substrate reactions in brain waves. We show that the two frequencies are strongly influenced by the nonlinear coefficients α\alpha and β\beta. With a random excitation, such as a Gaussian white noise, the attractor's global stability is measured by the mean escape time τ\tau from one limit-cycle. An effective activation energy barrier is obtained by the slope of the linear part of the variation of the escape time τ\tau versus the inverse noise-intensity 1/D. We find that the trapping barriers of the two frequencies can be very different, thus leaving the system on the same attractor for an overwhelming time. However, we also find that the system is nearly symmetric in a narrow range of the parameters.Comment: 17 pages, 8 figures, to appear on Choas, 201

    A Weak Gravitational Lensing Analysis of Abell 2390

    Full text link
    We report on the detection of dark matter in the cluster Abell 2390 using the weak gravitational distortion of background galaxies. We find that the cluster light and total mass distributions are quite similar over an angular scale of \simeq 7^\prime \;(1 \Mpc). The cluster galaxy and mass distributions are centered on the cluster cD galaxy and exhibit elliptical isocontours in the central \simeq 2^\prime \; (280 \kpc). The major axis of the ellipticity is aligned with the direction defined by the cluster cD and a ``straight arc'' located 38\simeq 38^{\prime\prime} to the northwest. We determined the radial mass-to-light profile for this cluster and found a constant value of (320±90)h  M/LV(320 \pm 90) h\; M_\odot/L_{\odot V}, which is consistent with other published determinations. We also compared our weak lensing azimuthally averaged radial mass profile with a spherical mass model proposed by the CNOC group on the basis of their detailed dynamical study of the cluster. We find good agreement between the two profiles, although there are weak indications that the CNOC density profile may be falling more steeply for θ3\theta\geq 3^\prime (420\kpc).Comment: 14 pages, latex file. Postscript file and one additional figure are available at ftp://magicbean.berkeley.edu/pub/squires/a2390/massandlight.ps.g

    Effective Fokker-Planck Equation for Birhythmic Modified van der Pol Oscillator

    Full text link
    We present an explicit solution based on the phase-amplitude approximation of the Fokker-Planck equation associated with the Langevin equation of the birhythmic modified van der Pol system. The solution enables us to derive probability distributions analytically as well as the activation energies associated to switching between the coexisting different attractors that characterize the birhythmic system. Comparing analytical and numerical results we find good agreement when the frequencies of both attractors are equal, while the predictions of the analytic estimates deteriorate when the two frequencies depart. Under the effect of noise the two states that characterize the birhythmic system can merge, inasmuch as the parameter plane of the birhythmic solutions is found to shrink when the noise intensity increases. The solution of the Fokker-Planck equation shows that in the birhythmic region, the two attractors are characterized by very different probabilities of finding the system in such a state. The probability becomes comparable only for a narrow range of the control parameters, thus the two limit cycles have properties in close analogy with the thermodynamic phases

    On the electron-induced isotope fractionation in low temperature <sup>32</sup>O<sub>2</sub>/<sup>36</sup>O<sub>2</sub> ices—ozone as a case study

    Get PDF
    The formation of six ozone isotopomers and isotopologues, 16O16O16O, 18O18O18O, 16O16O18O, 18O18O16O, 16O18O16O, and 18O16O18O, has been studied in electron-irradiated solid oxygen 16O2 and 18O2 (1 : 1) ices at 11 K. Significant isotope effects were found to exist which involved enrichment of 18O-bearing ozone molecules. The heavy 18O18O18O species is formed with a factor of about six higher than the corresponding 16O16O16O isotopologue. Likewise, the heavy 18O18O16O species is formed with abundances of a factor of three higher than the lighter 16O16O18O counterpart. No isotope effect was observed in the production of 16O18O16O versus 18O16O18O. Such studies on the formation of distinct ozone isotopomers and isotopologues involving non-thermal, non-equilibrium chemistry by irradiation of oxygen ices with high energy electrons, as present in the magnetosphere of the giant planets Jupiter and Saturn, may suggest that similar mechanisms may contribute to the 18O enrichment on the icy satellites of Jupiter and Saturn such as Ganymede, Rhea, and Dione. In such a Solar System environment, energetic particles from the magnetospheres of the giant planets may induce non-equilibrium reactions of suprathermal and/or electronically excited atoms under conditions, which are quite distinct from isotopic enrichments found in classical, thermal gas phase reactions

    Violation of the Leggett-Garg Inequality in Neutrino Oscillations

    Get PDF
    The Leggett-Garg inequality, an analogue of Bell's inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. The phenomenon of neutrino oscillations should adhere to quantum-mechanical predictions and provide an observable violation of the Leggett-Garg inequality. We demonstrate how oscillation phenomena can be used to test for violations of the classical bound by performing measurements on an ensemble of neutrinos at distinct energies, as opposed to a single neutrino at distinct times. A study of the MINOS experiment's data shows a greater than 6σ6{\sigma} violation over a distance of 735 km, representing the longest distance over which either the Leggett-Garg inequality or Bell's inequality has been tested.Comment: Updated to match published version. 6 pages, 2 figure

    Bias-Free Shear Estimation using Artificial Neural Networks

    Full text link
    Bias due to imperfect shear calibration is the biggest obstacle when constraints on cosmological parameters are to be extracted from large area weak lensing surveys such as Pan-STARRS-3pi, DES or future satellite missions like Euclid. We demonstrate that bias present in existing shear measurement pipelines (e.g. KSB) can be almost entirely removed by means of neural networks. In this way, bias correction can depend on the properties of the individual galaxy instead on being a single global value. We present a procedure to train neural networks for shear estimation and apply this to subsets of simulated GREAT08 RealNoise data. We also show that circularization of the PSF before measuring the shear reduces the scatter related to the PSF anisotropy correction and thus leads to improved measurements, particularly on low and medium signal-to-noise data. Our results are competitive with the best performers in the GREAT08 competition, especially for the medium and higher signal-to-noise sets. Expressed in terms of the quality parameter defined by GREAT08 we achieve a Q = 40, 140 and 1300 without and 50, 200 and 1300 with circularization for low, medium and high signal-to-noise data sets, respectively.Comment: 19 pages, 8 figures; accepted for publication in Ap

    Linear-time algorithms for scattering number and Hamilton-connectivity of interval graphs.

    Get PDF
    We prove that for all inline image an interval graph is inline image-Hamilton-connected if and only if its scattering number is at most k. This complements a previously known fact that an interval graph has a nonnegative scattering number if and only if it contains a Hamilton cycle, as well as a characterization of interval graphs with positive scattering numbers in terms of the minimum size of a path cover. We also give an inline image time algorithm for computing the scattering number of an interval graph with n vertices and m edges, which improves the previously best-known inline image time bound for solving this problem. As a consequence of our two results, the maximum k for which an interval graph is k-Hamilton-connected can be computed in inline image time
    corecore