98 research outputs found

    Risk of posterior capsular rupture during phacoemulsification cataract surgery in eyes with previous intravitreal antivascular endothelial growth factor injections

    Get PDF
    Purpose: To investigate if previous intravitreal anti vascular endothelial growth factor (VEGF) injections are a predictor for posterior capsule rupture (PCR) during phacoemulsification cataract surgery. Setting: National Health Service: Whipps Cross University Hospital Eye Treatment Centre. District General, London, United Kingdom Design: Single centre, retrospective, electronic medical record (EMR) database study with univariate analysis. Methods: EMR (Medisoft) was used to extract data for eyes undergoing phacoemulsification surgery between 01.08.16 to 01.01.18. Patient demographics, indication for intravitreal therapy, treatment type, number of previous intravitreal injections (IVI), diabetic status, surgeon grade and operative complications were included as variables for analysis. Results: Data was available for 4047 cataract operations. Of these, 108 had undergone previous anti-VEGF IVI treatment. Three eyes were noted to have pre-operative PC trauma and were excluded from the final analysis. The logistic regression analysis after exclusion of the eyes with pre-existing damage to the PC confirmed that prior anti-VEGF IVI treatment was associated with an increased risk of PCR when compared to the non IVI group (9.26% vs 1.88%, p<0.0001). There is a dose dependent relationship between the number of anti-VEGF injections and the likelihood of PCR. Conclusions: Previous intravitreal anti-VEGF injections are significantly correlated with an increased risk of surgical PCR despite the absence of visible structural damage to the PC pre-operatively

    Electron Correlations in an Electron Bilayer at Finite Temperature: Landau Damping of the Acoustic Plasmon

    Full text link
    We report angle-resolved Raman scattering observations of the temperature dependent Landau damping of the acoustic plasmon in an electron bilayer system realised in a GaAs double quantum well structure. Corresponding calculations of the charge-density excitation spectrum of the electron bilayer using forms of the random phase approximation (RPA), and the static local field formalism of Singwi, Tosi, Land and Sj\"{o}lander (STLS) extended to incorporate non-zero electron temperature TeT_{\rm e} and phenomenological damping, are also presented. The STLS calculations include details of the temperature dependence of the intra- and inter-layer local field factors and pair-correlation functions. Good agreement between experiment and the various theories is obtained for the acoustic plasmon energy and damping for Te≲TF/2T_{\rm e} \lesssim T_{\rm F}/2, the Fermi temperature. However, contrary to current expectations, all of the calculations show significant departures from our experimental data for Te≳TF/2T_{\rm e} \gtrsim T_{\rm F}/2. From this, we go on to demonstrate unambiguously that real local field factors fail to provide a physically accurate description of exchange correlation behaviour in low dimensional electron gases. Our results suggest instead that one must resort to a {\em{dynamical}} local field theory, characterised by a {\em{complex}} field factor to provide a more accurate description.Comment: 53 pages, 16 figure

    Introducing a nonvolatile N-type dopant drastically improves electron transport in polymer and small-molecule organic transistors

    Get PDF
    KGaA, Weinheim Molecular doping is a powerful yet challenging technique for enhancing charge transport in organic semiconductors (OSCs). While there is a wealth of research on p-type dopants, work on their n-type counterparts is comparatively limited. Here, reported is the previously unexplored n-dopant (12a,18a)-5,6,12,12a,13,18,18a,19-octahydro-5,6-dimethyl- 13,18[1′,2′]-benzenobisbenzimidazo [1,2-b:2′,1′-d]benzo[i][2.5]benzodiazo-cine potassium triflate adduct (DMBI-BDZC) and its application in organic thin-film transistors (OTFTs). Two different high electron mobility OSCs, namely, the polymer poly[[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8- bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2′-bithiophene)] and a small-molecule naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) are used to study the effectiveness of DMBI-BDZC as a n-dopant. N-doping of both semiconductors results in OTFTs with improved electron mobility (up to 1.1 cm2 V−1 s−1), reduced threshold voltage and lower contact resistance. The impact of DMBI-BDZC incorporation is particularly evident in the temperature dependence of the electron transport, where a significant reduction in the activation energy due to trap deactivation is observed. Electron paramagnetic resonance measurements support the n-doping activity of DMBI-BDZC in both semiconductors. This finding is corroborated by density functional theory calculations, which highlights ground-state electron transfer as the main doping mechanism. The work highlights DMBI-BDZC as a promising n-type molecular dopant for OSCs and its application in OTFTs, solar cells, photodetectors, and thermoelectrics

    Plasmons in coupled bilayer structures

    Full text link
    We calculate the collective charge density excitation dispersion and spectral weight in bilayer semiconductor structures {\it including effects of interlayer tunneling}. The out-of-phase plasmon mode (the ``acoustic'' plasmon) develops a long wavelength gap in the presence of tunneling with the gap being proportional to the square root (linear power) of the tunneling amplitude in the weak (strong) tunneling limit. The in-phase plasmon mode is qualitatively unaffected by tunneling. The predicted plasmon gap should be a useful tool for studying many-body effects.Comment: 10 pages, 6 figures. to appear in Phys. Rev. Let

    A Pediatric Infectious Disease Perspective of SARS-CoV-2 and COVID-19 in Children.

    Get PDF
    Understanding the role that children play in the clinical burden and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for novel coronavirus (COVID-19) infections is emerging. While the severe manifestations and acute clinical burden of COVID-19 has largely spared children compared to adults, understanding the epidemiology, clinical presentation, diagnostics, management, and prevention opportunities as well as the social and behavioral impacts on child health is vital. Foremost is clarifying the contribution of asymptomatic and mild infections to transmission within the household and community and the clinical and epidemiologic significance of uncommon severe post-infectious complications. Herein we summarize the current knowledge, identify useful resources, and outline research opportunities. Pediatric infectious disease clinicians have a unique opportunity to advocate for the inclusion of children in epidemiological, clinical, treatment and prevention studies to optimize their care, as well as to represent children in the development of guidance and policy during pandemic response

    Carrier relaxation due to electron-electron interaction in coupled double quantum well structures

    Full text link
    We calculate the electron-electron interaction induced energy-dependent inelastic carrier relaxation rate in doped semiconductor coupled double quantum well nanostructures within the two subband approximation at zero temperature. In particular, we calculate, using many-body theory, the imaginary part of the full self-energy matrix by expanding in the dynamically RPA screened Coulomb interaction, obtaining the intrasubband and intersubband electron relaxation rates in the ground and excited subbands as a function of electron energy. We separate out the single particle and the collective excitation contributions, and comment on the effects of structural asymmetry in the quantum well on the relaxation rate. Effects of dynamical screening and Fermi statistics are automatically included in our many body formalism rather than being incorporated in an ad-hoc manner as one must do in the Boltzman theory.Comment: 26 pages, 5 figure

    Collective modes in a system with two spin-density waves: the `Ribault' phase of quasi-one-dimensional organic conductors

    Full text link
    We study the long-wavelength collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family, focusing on phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly). We have recently proposed that two SDW's coexist in the Ribault phase, as a result of Umklapp processes. When the latter are strong enough, the two SDW's become circularly polarized (helicoidal SDW's). In this paper, we study the collective modes which result from the presence of two SDW's. We find two Goldstone modes, an out-of-phase sliding mode and an in-phase spin-wave mode, and two gapped modes. The sliding Goldstone mode carries only a fraction of the total optical spectral weight, which is determined by the ratio of the amplitude of the two SDW's. In the helicoidal phase, all the spectral weight is pushed up above the SDW gap. We also point out similarities with phase modes in two-band or bilayer superconductors. We expect our conclusions to hold for generic two-SDW systems.Comment: Revised version, 25 pages, RevTex, 7 figure

    Characteristics and risk factors associated with critical illness in pediatric COVID-19

    Get PDF
    © 2020, The Author(s). Background: While much has been reported regarding the clinical course of COVID-19 in children, little is known regarding factors associated with organ dysfunction in pediatric COVID-19. We describe critical illness in pediatric patients with active COVID-19 and identify factors associated with PICU admission and organ dysfunction. This is a retrospective chart review of 77 pediatric patients age 1 day to 21 years admitted to two New York City pediatric hospitals within the Northwell Health system between February 1 and April 24, 2020 with PCR + SARS-CoV-2. Descriptive statistics were used to describe the hospital course and laboratory results and bivariate comparisons were performed on variables to determine differences. Results: Forty-seven patients (61%) were admitted to the general pediatric floor and thirty (39%) to the PICU. The majority (97%, n = 75) survived to discharge, 1.3% (n = 1) remain admitted, and 1.3% (n = 1) died. Common indications for PICU admission included hypoxia (50%), hemodynamic instability (20%), diabetic ketoacidosis (6.7%), mediastinal mass (6.7%), apnea (6.7%), acute chest syndrome in sickle cell disease (6.7%), and cardiac dysfunction (6.7%). Of PICU patients, 46.7% experienced any significant organ dysfunction (pSOFA \u3e = 2) during admission. Patients aged 12 years or greater were more likely to be admitted to a PICU compared to younger patients (p = 0.015). Presence of an underlying comorbidity was not associated with need for PICU admission (p = 0.227) or organ dysfunction (p = 0.87). Initial white blood cell count (WBC), platelet count, and ferritin were not associated with need for PICU admission. Initial C-reactive protein was associated with both need for PICU admission (p = 0.005) and presence of organ dysfunction (p = 0.001). Initial WBC and presenting thrombocytopenia were associated with organ dysfunction (p = 0.034 and p = 0.003, respectively). Conclusions: Age over 12 years and initial CRP were associated with need for PICU admission in COVID-19. Organ dysfunction was associated with elevated admission CRP, elevated WBC, and thrombocytopenia. These factors may be useful in determining risk for critical illness and organ dysfunction in pediatric COVID-19

    Systematic review of mass media interventions designed to improve public recognition of stroke symptoms, emergency response and early treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass media interventions have been implemented to improve emergency response to stroke given the emergence of effective acute treatments, but their impact is unclear.</p> <p>Methods</p> <p>Systematic review of mass media interventions aimed at improving emergency response to stroke, with narrative synthesis and review of intervention development.</p> <p>Results</p> <p>Ten studies were included (six targeted the public, four both public and professionals) published between 1992 and 2010. Only three were controlled before and after studies, and only one had reported how the intervention was developed. Campaigns aimed only at the public reported significant increase in awareness of symptoms/signs, but little impact on awareness of need for emergency response. Of the two controlled before and after studies, one reported no impact on those over 65 years, the age group at increased risk of stroke and most likely to witness a stroke, and the other found a significant increase in awareness of two or more warning signs of stroke in the same group post-intervention. One campaign targeted at public and professionals did not reduce time to presentation at hospital to within two hours, but increased and sustained thrombolysis rates. This suggests the campaign had a primary impact on professionals and improved the way that services for stroke were organised.</p> <p>Conclusions</p> <p>Campaigns aimed at the public may raise awareness of symptoms/signs of stroke, but have limited impact on behaviour. Campaigns aimed at both public and professionals may have more impact on professionals than the public. New campaigns should follow the principles of good design and be robustly evaluated.</p
    • …
    corecore