287 research outputs found

    Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission

    Full text link
    High-TcT_c cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antinodal quasiparticle excitations appear only below TcT_c, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to TcT_c. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic

    Direct observation of t2g orbital ordering in magnetite

    Full text link
    Using soft-x-ray diffraction at the site-specific resonances in the Fe L23 edge, we find clear evidence for orbital and charge ordering in magnetite below the Verwey transition. The spectra show directly that the (001/2) diffraction peak (in cubic notation) is caused by t2g orbital ordering at octahedral Fe2+ sites and the (001) by a spatial modulation of the t2g occupation.Comment: to appear in Phys. Rev. Let

    Ce-L3-XAS study of the temperature dependence of the 4f occupancy in the Kondo system Ce2Rh3Al9

    Get PDF
    We have used temperature dependent x-ray absorption at the Ce-L3 edge to investigate the recently discovered Kondo compound Ce2Rh3Al9. The systematic changes of the spectral lineshape with decreasing temperature are analyzed and found to be related to a change in the 4f4f occupation number, n_f, as the system undergoes a transition into a Kondo state. The temperature dependence of nfn_f indicates a characteristic temperature of 150K, which is clearly related with the high temperature anomaly observed in the magnetic susceptibility of the same system. The further anomaly observed in the resistivity of this system at low temperature (ca. 20K) has no effect on n_f and is thus not of Kondo origin.Comment: 7 pages, three figures, submitted to PR

    Phenotype variability of infantile-onset multisystem neurologic, endocrine, and pancreatic disease IMNEPD

    Get PDF
    Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) has been recently linked to biallelic mutation of the peptidyl-tRNA hydrolase 2 gene PTRH2. Two index patients with IMNEPD in the original report had multiple neurological symptoms such as postnatal microcephaly, intellectual disability, developmental delay, sensorineural deafness, cerebellar atrophy, ataxia, and peripheral neuropathy. In addition, distal muscle weakness and abnormalities of thyroid, pancreas, and liver were found. Here, we report five further IMNEPD patients with a different homozygous PTRH2 mutation, broaden the phenotypic spectrum of the disease and differentiate common symptoms and interindividual variability in IMNEPD associated with a unique mutation. We thereby hope to better define IMNEPD and promote recognition and diagnosis of this novel disease entity

    Characteristic features of the temperature dependence of the surface impedance in polycrystalline MgB2_2 samples

    Full text link
    The real Rs(T)R_s(T) and imaginary Xs(T)X_s(T) parts of the surface impedance Zs(T)=Rs(T)+iXs(T)Z_s(T)=R_s(T)+iX_s(T) in polycrystalline MgB2_2 samples of different density with the critical temperature Tc38T_c\approx 38 K are measured at the frequency of 9.4 GHz and in the temperature range 5T<2005\le T<200 K. The normal skin-effect condition Rs(T)=Xs(T)R_s(T)=X_s(T) at TTcT\ge T_c holds only for the samples of the highest density with roughness sizes not more than 0.1 μ\mum. For such samples extrapolation T0T\to 0 of the linear at T<Tc/2T<T_c/2 temperature dependences λL(T)=Xs(T)/ωμ0\lambda_L(T)=X_s(T)/\omega\mu_0 and Rs(T)R_s(T) results in values of the London penetration depth λL(0)600\lambda_L(0)\approx 600 \AA and residual surface resistance Rres0.8R_{res}\approx 0.8 mΩ\Omega. In the entire temperature range the dependences Rs(T)R_s(T) and Xs(T)X_s(T) are well described by the modified two-fluid model.Comment: 7 pages, 3 figures. Europhysics Letters, accepted for publicatio

    Relaxation Dynamics of Photoinduced Changes in the Superfluid Weight of High-Tc Superconductors

    Get PDF
    In the transient state of d-wave superconductors, we investigate the temporal variation of photoinduced changes in the superfluid weight. We derive the formula that relates the nonlinear response function to the nonequilibrium distribution function. The latter qunatity is obtained by solving the kinetic equation with the electron-electron and the electron-phonon interaction included. By numerical calculations, a nonexponential decay is found at low temperatures in contrast to the usual exponential decay at high temperatures. The nonexponential decay originates from the nonmonotonous temporal variation of the nonequilibrium distribution function at low energies. The main physical process that causes this behavior is not the recombination of quasiparticles as previous phenomenological studies suggested, but the absorption of phonons.Comment: 18 pages, 12 figures; to be published in J. Phys. Soc. Jpn. Vol. 80, No.

    Metal-insulator Crossover Behavior at the Surface of NiS_2

    Full text link
    We have performed a detailed high-resolution electron spectroscopic investigation of NiS2_2 and related Se-substituted compounds NiS2x_{2-x}Sex_x, which are known to be gapped insulators in the bulk at all temperatures. A large spectral weight at the Fermi energy of the room temperature spectrum, in conjunction with the extreme surface sensitivity of the experimental probe, however, suggests that the surface layer is metallic at 300 K. Interestingly, the evolution of the spectral function with decreasing temperature is characterized by a continuous depletion of the single-particle spectral weight at the Fermi energy and the development of a gap-like structure below a characteristic temperature, providing evidence for a metal-insulator crossover behavior at the surfaces of NiS2_2 and of related compounds. These results provide a consistent description of the unusual transport properties observed in these systems.Comment: 12 pages, 3 figure

    Electronic structure of NiS1x_{1-x}Sex_x across the phase transition

    Full text link
    We report very highly resolved photoemission spectra of NiS(1-x)Se(x) across the so-called metal-insulator transition as a function of temperature as well as composition. The present results convincingly demonstrate that the low temperature, antiferromagnetic phase is metallic, with a reduced density of states at EF_F. This decrease is possibly due to the opening of gaps along specific directions in the Brillouin zone caused by the antiferromagnetic ordering.Comment: Revtex, 4 pages, 3 postscript figure
    corecore