27 research outputs found

    Preliminary study based on methylation and transcriptome gene sequencing of lncRNAs and immune infiltration in hypopharyngeal carcinoma

    Get PDF
    BackgroundHypopharyngeal squamous cell cancer (HSCC) is one of the most malignant tumors of the head and neck. It is not easy to detect in the early stage due to its hidden location; thus, lymph node metastasis is highly likely at diagnosis, leading to a poor prognosis. It is believed that epigenetic modification is related to cancer invasion and metastasis. However, the role of m6A-related lncRNA in the tumor microenvironment (TME) of HSCC remains unclear.MethodsThe whole transcriptome and methylation sequencing of 5 pairs of HSCC tissues and adjacent tissues were performed to identify the methylation and transcriptome profiles of lncRNAs. The biological significance of lncRNAs differentially expressing the m6A peak was analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. By constructing an m6A lncRNA-microRNA network, the mechanism of m6A lncRNAs in HSCC was analyzed. The relative expression levels of selected lncRNAs were examined by quantitative polymerase chain reaction. The CIBERSORT algorithm was used to evaluate the relative proportion of immune cell infiltration in HSCC and paracancerous tissues.ResultsBased on an in-depth analysis of the sequencing results, 14413 differentially expressed lncRNAs were revealed, including 7329 up-regulated and 7084 down-regulated lncRNAs. Additionally, 4542 up-methylated and 2253 down-methylated lncRNAs were detected. We demonstrated methylation patterns and gene expression profiles of lncRNAs of HSCC transcriptome. In the intersection analysis of lncRNAs and methylated lncRNAs, 51 lncRNAs with up-regulated transcriptome and methylation and 40 lncRNAs with down-regulated transcriptome and methylation were screened, and significantly differentiated lncRNAs were further studied. In the immune cell infiltration analysis, B cell memory was significantly elevated in cancer tissue, while γδT cell amount was significantly decreased.Conclusionm6A modification of lncRNAs might be involved in HSCC pathogenesis. Infiltration of immune cells in HSCC might provide a new direction for its treatment. This study provides new insights for exploring the possible HSCC pathogenesis and searching for new potential therapeutic targets

    Medium Optimization for GA4 Production by Gibberella fujikuroi Using Response Surface Methodology

    No full text
    Gibberellin is an important plant growth regulator that has been widely used in agricultural production with great market prospects. However, the low yield from Gibberella fujikuroi restricts its application. To improve the production of gibberellin A4 (GA4), the response surface methodology was used in this study to explore the effect of different types and concentrations of vegetable oil and precursors on the production of GA4. Based on a single factor experiment, the Behnken box and central composite designs were used to establish the fermentation condition model, and the response surface method was used for analysis. The results indicated that the optimum formula was 0.55% palm oil, 0.60% cottonseed oil, 0.64% sesame oil, 0.19 g/L pyruvic acid, 0.21 g/L oxaloacetic acid, and 0.21 g/L citric acid for 48 h, which produced a yield 4.32 times higher than that without optimization. This suggests that the mathematical model is valid for predicting GA4 production in Gibberella fujikuroi QJGA4-1

    Medium Optimization for GA4 Production by <i>Gibberella fujikuroi</i> Using Response Surface Methodology

    No full text
    Gibberellin is an important plant growth regulator that has been widely used in agricultural production with great market prospects. However, the low yield from Gibberella fujikuroi restricts its application. To improve the production of gibberellin A4 (GA4), the response surface methodology was used in this study to explore the effect of different types and concentrations of vegetable oil and precursors on the production of GA4. Based on a single factor experiment, the Behnken box and central composite designs were used to establish the fermentation condition model, and the response surface method was used for analysis. The results indicated that the optimum formula was 0.55% palm oil, 0.60% cottonseed oil, 0.64% sesame oil, 0.19 g/L pyruvic acid, 0.21 g/L oxaloacetic acid, and 0.21 g/L citric acid for 48 h, which produced a yield 4.32 times higher than that without optimization. This suggests that the mathematical model is valid for predicting GA4 production in Gibberella fujikuroi QJGA4-1

    Measuring Spatial Accessibility of Urban Fire Services Using Historical Fire Incidents in Nanjing, China

    No full text
    The measurement of spatial accessibility of fire services is a key task in enhancing fire response efficiency and minimizing property losses and deaths. Recently, the two-step floating catchment area method and its modified versions have been widely applied. However, the circle catchment areas used in these methods are not suitable for measuring the accessibility of fire services because each fire station is often responsible for the fire incidents within its coverage. Meanwhile, most existing methods take the demographic data and their centroids of residential areas as the demands and locations, respectively, which makes it difficult to reflect the actual demands and locations of fire services. Thus, this paper proposes a fixed-coverage-based two-step floating catchment area (FC2SFCA) method that takes the fixed service coverage of fire stations as the catchment area and the locations and dispatched fire engines of historical fire incidents as the demand location and size, respectively, to measure the spatial accessibility of fire services. Using a case study area in Nanjing, China, the proposed FC2SFCA and enhanced two-step floating catchment area (E2SFCA) are employed to measure and compare the spatial accessibility of fire incidents and fire stations. The results show that (1) the spatial accessibility across Nanjing, China is unbalanced, with relatively high spatial accessibility in the areas around fire stations and the southwest and northeast at the city center area and relatively low spatial accessibility in the periphery and boundary of the service coverage areas and the core of the city center; (2) compared with E2SFCA, FC2SFCA is less influenced by other fire stations and provides greater actual fire service accessibility; (3) the spatial accessibility of fire services is more strongly affected by the number of fire incidents than firefighting capabilities, the area of service coverage, or the average number of crossroads (per kilometer). Suggestions are then made to improve the overall spatial access to fire services

    A Truck-Borne System Based on Cold Atom Gravimeter for Measuring the Absolute Gravity in the Field

    No full text
    The cold atom gravimeter (CAG) has proven to be a powerful quantum sensor for the high-precision measurement of gravity field, which can work stably for a long time in the laboratory. However, most CAGs cannot operate in the field due to their complex structure, large volume and poor environmental adaptability. In this paper, a home-made, miniaturized CAG is developed and a truck-borne system based on it is integrated to measure the absolute gravity in the field. The measurement performance of this system is evaluated by applying it to measurements of the gravity field around the Xianlin reservoir in Hangzhou City of China. The internal and external coincidence accuracies of this measurement system were demonstrated to be 35.4 &mu;Gal and 76.7 &mu;Gal, respectively. Furthermore, the theoretical values of the measured eight points are calculated by using a forward modeling of a local high-resolution digital elevation model, and the calculated values are found to be in good agreement with the measured values. The results of this paper show that this home-made, truck-borne CAG system is reliable, and it is expected to improve the efficiency of gravity surveying in the field

    A Testing Method for Shipborne Atomic Gravimeter Based on the Modulated Coriolis Effect

    No full text
    Shipborne atomic gravimeter (SAG) is an instrument that can directly measure absolute gravity in dynamic environments. As a new type of gravity sensor, a standard method for evaluating its detailed performance has not been proposed and the detailed performance of SAG was rarely reported. In this paper, a system of dynamic gravity measurement, which was integrated with a home-made atomic gravimeter, is demonstrated, and a novel and simple method for testing the performance of SAG on the lake based on the modulated Coriolis effect is put forward. Firstly, in the state of ship mooring, a tilt modulation of the gravity sensor has been realized to make sure the Raman wave vector is parallel to the gravity axis. Moreover, a comparison between the measurement result of CG-5 and SAG has also been carried out to evaluate the accuracy of the SAG. Then, the Coriolis effect modulating experiment is carried out with various routes on lake to test its performance in dynamic environments. In the ship mooring state, the accuracy has been demonstrated to be 0.643 mGal. The internal consistency reliabilities are evaluated to be 0.8 mGal and 1.2 mGal under the conditions of straight line and circle navigation, respectively

    An ultra-thin high-efficiency plasmonic metalens with symmetric split ring transmitarray metasurfaces

    No full text
    Metasurface lenses (or metalenses) have aroused great attentions and efforts in the community of metamaterials or metasurfaces due to its ultrathin device dimension and superior focusing performances. High-efficiency transmissive metalenses with an ultra-thin device thickness are an important aspect especially in the low frequency by using plasmonic transmitarray antennas. In this paper, an ultra-thin plasmonic metalens with only 0.1λ (λ is working wavelength, the aperture size is 7λ) device thickness is designed by changing the radius of the proposed symmetric complementary split ring resonator antenna metasurfaces. Thanks to its high transmittance and large phase shift of the plasmonic meta-atoms, the designed metalens achieves both high transmissive efficiency of 80% and high focusing efficiency of 50% on the focal plane of F = 4.6λ in the simulations. The designed ultra-thin plasmonic metalens has a moderate large numerical aperture of 0.67 (NA = 0.67). In order to verify its high working efficiency of the proposed plasmonic metalens, a sample is also fabricated and a much higher focusing efficiency of 65% is realized in the measurements. The influence of the open angles of the symmetric split ring transmitarray metasurface on the focusing performances such as working efficiency and NA of the designed metalens is also studied and analyzed finally, which can add new degree of freedoms to optimize its focusing performance. The presented studies can facilitate the development of high-efficiency metalenses in the low frequency and have significant potential applications in high-resolution microwave imaging, high-gain metalens antennas and others

    Analysis of myosin genes in HNSCC and identify MYL1 as a specific poor prognostic biomarker, promotes tumor metastasis and correlates with tumor immune infiltration in HNSCC

    No full text
    Abstract Head neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors which ranks the sixth incidence in the world. Although treatments for HNSCC have improved significantly in recent years, its recurrence rate and mortality rate remain high. Myosin genes have been studied in a variety of tumors, however its role in HNSCC has not been elucidated. GSE58911 and GSE30784 gene expression profile analysis were performed to detect significantly dys-regulated myosin genes in HNSCC. The Cancer Genome Atlas (TCGA) HNSCC database was used to verify the dys-regulated myosin genes and study the relationship between these genes and prognosis in HNSCC. The results showed that MYL1, MYL2, MYL3, MYH2, and MYH7 were down-regulated, while MYH10 was up-regulated in patients with HNSCC. Interestingly, MYL1, MYL2, MYH1, MYH2, and MYH7 were shown to be unfavorable prognostic markers in HNSCC. It is also worth noting that MYL1 was a specific unfavorable prognostic biomarker in HNSCC. MYL1, MYL2, MYL3, MYH2, MYH7, and MYH10 promoted CD4 + T cells activation in HNSCC. MYL1 was proved to be down-regulated in HNSCC tissues compared to normal tissues at protein levels. MYL1 overexpression had no effect on proliferation, but significantly promoted migration of Fadu cells. MYL1 increased EGF and EGFR protein expression levels. Moreover, there is a positive correlation between MYL1 expression and Tcm CD8 cells, Tcm CD4 + cells, NK cells, Mast cells, NKT cells, Tfh cells and Treg cells in HNSCC. Overall, MYL1 facilitates tumor metastasis and correlates with tumor immune infiltration in HNSCC and these effects may be associated with the EGF/EGFR pathway

    Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions

    No full text
    Abstract The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone‐regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue‐engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies
    corecore