2 research outputs found

    In<sub>2</sub>S<sub>3</sub>@TiO<sub>2</sub>/In<sub>2</sub>S<sub>3</sub> Z-Scheme Heterojunction with Synergistic Effect for Enhanced Photocathodic Protection of Steel

    Full text link
    In this work, a TiO2/In2S3 heterojunction film was successfully synthesized using a one-step hydrothermal method and applied in the photocathodic protection (PCP) of 304SS. The octahedral In2S3 and In2S3@TiO2 nanoparticles combined and coexisted with each other, with In2S3 quantum dots growing on the surface of TiO2 to form In2S3@TiO2 with a wrapping structure. The composite photoelectrode, which includes TiO2 with a mixed crystalline phase and In2S3, exhibited significantly enhanced PCP performance for 304SS compared with pure In2S3 and TiO2. The In2S3@TiO2/In2S3 composites with 0.3 g of P25 titanium dioxide (P25) showed the best protection performance, resulting in a cathodic shift of its OCP coupled with 304SS to −0.664 VAgCl. The electron transfer tracking results demonstrate that In2S3@TiO2/In2S3 forms a Z-scheme heterojunction structure. The enhanced PCP performance could be attributed to the synergistic effect of the mixed crystalline phase and the Z-scheme heterojunction system. The mixed crystalline phase of TiO2 provides more electrons, and these electrons are gathered at higher energy potentials in the Z-scheme system. Additionally, the built-in electric field further promotes the more effective electrons transfer from photoelectrode to the protected metals, thus, leading to enhanced photoelectrochemical cathodic protection of 304SS

    Oxidized Graphitic-C<sub>3</sub>N<sub>4</sub> with an Extended π-System for Enhanced Photoelectrochemical Property and Behavior

    Full text link
    In this work, an oxidized g-C3N4 film was successfully synthesized using a two-step acid treatment and electrophoretic deposition method. The delocalized π-system of the oxidized g-C3N4 film was extended via an annealing treatment. We investigated the influence of hydrogen bonding reversibility and the oxidation treatment of g-C3N4 on the photoelectrochemical property and photocathodic protection for 304 stainless steel (304 SS). The resulting oxidized g-C3N4 photoelectrode with an extended π-system presents a remarkably enhanced photogenerated electron transfer capability from the photoelectrode to 304 SS (photoinduced OCP negative shift of −0.55 VAgCl) compared with oxidized g-C3N4 and protonated g-C3N4. The oxidation of g-C3N4 facilitates the formation of a porous structure and the introduction of abundant oxygen functional groups, which could promote the effective separation and transport of photogenerated electron–hole pairs. The hydrogen bonding reversibility contributes to the extension of the delocalized π-conjugation system, which could enhance light absorption efficiency. Meanwhile, the annealing treatment is beneficial for prolonging the lifetime of photoelectrons, which could reduce the recombination rate of charge carriers. In addition, to understand how the oxidation treatment and annealing treatment affect the charge transfer behavior, the electronic band structure was investigated, and we found that the oxidized g-C3N4 film with an extended π-system possesses a more negative conduction band position, which could reduce the energy barrier of the photogenerated electron transfer
    corecore