286 research outputs found
Revolutionizing digital healthcare networks with wearable strain sensors using sustainable fibers
Wearable strain sensors have attracted research interest owing to their potential within digital healthcare, offering smarter tracking, efficient diagnostics, and lower costs. Unlike rigid sensors, fiber‐based ones compete with their flexibility, durability, adaptability to body structures as well as eco‐friendliness to environment. Here, the sustainable fiber‐based wearable strain sensors for digital health are reviewed, and material, fabrication, and practical healthcare aspects are explored. Typical strain sensors predicated on various sensing modalities, be it resistive, capacitive, piezoelectric, or triboelectric, are explained and analyzed according to their strengths and weaknesses toward fabrication and applications. The applications in digital healthcare spanning from body area sensing networks, intelligent health management, and medical rehabilitation to multifunctional healthcare systems are also evaluated. Moreover, to create a more complete digital health network, wired and wireless methods of data collection and examples of machine learning are elaborated in detail. Finally, the prevailing challenges and prospective insights into the advancement of novel fibers, enhancement of sensing precision and wearability, and the establishment of seamlessly integrated systems are critically summarized and offered. This endeavor not only encapsulates the present landscape but also lays the foundation for future breakthroughs in fiber‐based wearable strain sensor technology within the domain of digital health
Analysis of Changes in Precipitation and Drought in Aksu River Basin, Northwest China
The analysis of the spatiotemporal trends of precipitation and drought is relevant for the future development and sustainable management of water resources in a given region. In this study, precipitation and Standardized Precipitation Index (SPI) trends were analyzed through applying linear regression, Mann-Kendall, and Spearman's Rho tests at the 5% significance level. For this goal, meteorological data from 9 meteorological stations in and around Aksu Basin during the period 1960-2010 was used, and two main annual drought periods were detected (1978-1979 and 1983-1986), while the extremely dry years were recorded in 1975 and 1985 at almost all of the stations. The monthly analysis of precipitation series indicates that all stations had increasing trend in July, October, and December, while both increasing and decreasing trends were found in other months. For the seasonal scale, precipitation series had increasing trends in summer and winter. 33% of the stations had the decreasing trend on precipitation in the spring series, and it was 11% in the autumn. At the same time, the SPI-12 values of all stations had the increasing trend. The significant trends were detected at Aheqi, Baicheng, Keping, and Kuche stations
Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources
Cavity-enhanced single quantum dots (QDs) are the main approach towards
ultra-high-performance solid-state quantum light sources for scalable photonic
quantum technologies. Nevertheless, harnessing the Purcell effect requires
precise spectral and spatial alignment of the QDs' emission with the cavity
mode, which is challenging for most cavities. Here we have successfully
integrated miniaturized Fabry-Perot microcavities with a piezoelectric
actuator, and demonstrated a bright single photon source derived from a
deterministically coupled QD within this microcavity. Leveraging the
cavity-membrane structures, we have achieved large spectral-tunability via
strain tuning. On resonance, we have obtained a high Purcell factor of
approximately 9. The source delivers single photons with simultaneous high
extraction efficiency of 0.58, high purity of 0.956(2) and high
indistinguishability of 0.922(4). Together with a small footprint, our scheme
facilitates the scalable integration of indistinguishable quantum light sources
on-chip, and therefore removes a major barrier to the solid-state quantum
information platforms based on QDs.Comment: 12 pages, 4 figure
Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects
Introduction: Congenital or acquired bone defects in the oral and cranio-maxillofacial (OCMF) regions can seriously affect the normal function and facial appearance of patients, and cause great harm to their physical and mental health. To achieve good bone defect repair results, the prosthesis requires good osteogenic ability, appropriate porosity, and precise three-dimensional shape. Tantalum (Ta) has better mechanical properties, osteogenic ability, and microstructure compared to Ti6Al4V, and has become a potential alternative material for bone repair. The bones in the OCMF region have unique shapes, and 3D printing technology is the preferred method for manufacturing personalized prosthesis with complex shapes and structures. The surface characteristics of materials, such as surface morphology, can affect the biological behavior of cells. Among them, nano-topographic surface modification can endow materials with unique surface properties such as wettability and large surface area, enhancing the adhesion of osteoblasts and thereby enhancing their osteogenic ability.Methods: This study used 3D-printed porous tantalum scaffolds, and constructed nano-topographic surface through hydrothermal treatment. Its osteogenic ability was verified through a series of in vitro and in vivo experiments.Results: The porous tantalum modified by nano-topographic surface can promote the proliferation and osteogenic differentiation of BMSCs, and accelerate the formation of new bone in the Angle of the mandible bone defect of rabbits.Discussion: It can be seen that 3D-printed nano-topographic surface modified porous tantalum has broad application prospects in the repair of OCMF bone defects
N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection
Molecular manipulation of susceptibility (S) genes that are antipodes to resistance (R) genes has been adopted as an alternative strategy for controlling crop diseases. Here, we show the S gene encoding Triticum aestivum m(6)A methyltransferase B (TaMTB) is identified by a genome-wide association study and subsequently shown to be a positive regulator for wheat yellow mosaic virus (WYMV) infection. TaMTB is localized in the nucleus, is translocated into the cytoplasmic aggregates by binding to WYMV NIb to upregulate the m(6)A level of WYMV RNA1 and stabilize the viral RNA, thus promoting viral infection. A natural mutant allele TaMTB-SNP176C is found to confer an enhanced susceptibility to WYMV infection through genetic variation analysis on 243 wheat varieties. Our discovery highlights this allele can be a useful target for the molecular wheat breeding in the future
Improved lithium ion battery performance by mesoporous Co3O 4 nanosheets grown on self-standing NiSix nanowires on nickel foam
Novel three-dimensional (3D) hierarchical NiSix/Co 3O4 core-shell nanowire arrays composed of NiSi x nanowire cores and branched Co3O4 nanosheet shells have been successfully synthesized by combining chemical vapor deposition and a simple but effective chemical bath deposition process followed by a calcination process. The resulting hierarchical NiSix/Co 3O4 core-shell nanowire arrays directly serve as binder- and conductive-agent-free electrodes for lithium ion batteries, which demonstrate remarkably improved electrochemical performances with excellent capacity retention and high rate capability on cycling. They can maintain a stable reversible capacity of 1279 mA h g-1 after 100 cycles at a current density of 400 mA g-1 and a capacity higher than 340 mA h g-1 even at a current density as high as 8 A g-1. Such superior electrochemical performance of the electrodes made by directly growing electro-active highly porous Co3O4 on a nanostructured NiSix conductive current collector makes them very promising for applications in high-performance lithium ion batteries. ? 2014 the Partner Organisations
Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering
Hydrogels composed of natural materials exhibit great application potential in artificial scaffolds for cartilage repair as they can resemble the extracellular matrices of cartilage tissues comprised of various glycosaminoglycan and collagen. Herein, the natural polymers with vinyl groups, i.e. maleilated chitosan (MCS) and methacrylated silk fibroin (MSF) micro/nanoparticles, were firstly synthesized. The chemical structures of MCS and MSF micro/nanoparticles were investigated using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Then MCS/MSF micro/nanocomposite hydrogels were prepared by the photocrosslinking of MCS and MSF micro/nanoparticles in aqueous solutions in the presence of the photoinitiator Darocur 2959 under UV light irradiation. A series of properties of the MCS/MSF micro/nanocomposite hydrogels including rheological property, equilibrium swelling, sol content, compressive modulus, and morphology were examined. The results showed that these behaviors could be tunable via the control of MSF content. When the MSF content was 0.1%, the hydrogel had the compressive modulus of 0.32±0.07MPa, which was in the range of that of articular cartilage. The in vitro cytotoxic evaluation and cell culture of the micro/nanocomposite hydrogels in combination with mouse articular chondrocytes were also investigated. The results demonstrated that the micro/nanocomposite hydrogels with TGF-β1 was biocompatible to mouse articular chondrocytes and could support cells attachment well, indicating their potential as tissue engineering scaffolds for cartilage repair.This study was supported by National Natural Science Foundation
of China (Grant No. 51203123, 51403165, 51503161) and
the National Key Research and Development Program of China
(No.2016YFA0101102)
The influence of metabolic syndrome on age-related hearing loss from the perspective of mitochondrial dysfunction
With the increase in life expectancy in the global population, aging societies have emerged in many countries, including China. As a common sensory defect in the elderly population, the prevalence of age-related hearing loss and its influence on society are increasing yearly. Metabolic syndrome is currently one of the main health problems in the world. Many studies have demonstrated that metabolic syndrome and its components are correlated with a variety of age-related diseases of the peripheral sensory system, including age-related hearing loss. Both age-related hearing loss and metabolic syndrome are high-prevalence chronic diseases, and many people suffer from both at the same time. In recent years, more and more studies have found that mitochondrial dysfunction occurs in both metabolic syndrome and age-related hearing loss. Therefore, to better understand the impact of metabolic syndrome on age-related hearing loss from the perspective of mitochondrial dysfunction, we reviewed the literature related to the relationship between age-related hearing loss and metabolic syndrome and their components to discern the possible role of mitochondria in both conditions
- …