146 research outputs found

    Clinical and immunological characteristics of TGM3 in pan-cancer: A potential prognostic biomarker

    Get PDF
    Background: Recent studies have identified that transglutaminases (TGMs) are involved in a widespread epigenetic modification in tumorigenesis. However, it remains unclear how transglutaminase 3 (TGM3) affects in pan-cancer. The present study aimed to explore the clinical and prognostic function of TGM3 in pan-cancer as well as to explore the relationship of TGM3 expression with clinical stage, survival rate, prognosis condition, immune infiltration and mutation indicators.Methods: The relevant data of tumors were obtained from The Cancer Genome Atlas (TCGA), TARGET, Cancer Cell Line Encyclopedia (CCLE) and Genotype-Tissue Expression (GTEx) databases. According to the Human Protein Atlas (HPA) and TIMER databases, we evaluated the protein expression levels of TGM3 in different organs and tissues as well as their association with immune cell infiltration and immunotherapeutic response in pan-cancers. Expression differences between normal and tumor tissues as well as survival and prognosis situation, clinical data characteristics, tumor mutational burden (TMB), microsatellite instability (MSI), and RNA methylation were also assessed. Oncogenic analyses were also evaluated by GSEA.Results: Compared to normal tissues, some tumor tissues had a lower expression level of TGM3, while other tumor tissues had a high expression level of TGM3. Further studies showed that high TGM3 expression had a certain risk impact on pan-cancer as high TGM3 expression levels were detrimental to the survival of several cancers, except for pancreatic cancer (PAAD). High expression level of TGM3 was also related to higher clinical stages in most cancers. The expression level of TGM3 was significantly negatively correlated with the expression of immune infiltration-related cells, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages and dendritic cells (DCs). Furthermore, in most cancer types, TGM3 was inversely correlated with TMB, MSI, and methylation, suggesting that TGM3 expression can be used to assess potential therapeutic response, especially immune-related targeted therapy. GSEA analysis elucidated the biological and molecular function of TGM3 in various cancer types. Taken together, these bioinformatic analyses identified TGM3 as an important biomarker for clinical tumor prognosis and evaluation of treatment efficacy.Conclusion: We comprehensively analyzed the clinical characteristics, tumor stages, immune infiltration, methylation level, gene mutation, functional enrichment analysis and immunotherapeutic value of TGM3 in pan-cancer, providing implications for the function of TGM3 and its role in clinical treatment

    Cloning and sequence analysis of Wild Argali short palate, lung and nasal epithelium clone 1 cDNA

    Get PDF
    Objective Experiments were conducted to clone the sequence of Wild Argali short palate, lung and nasal epithelium clone 1 (SPLUNC1) cDNA, and to lay the foundation for further study the biological function of Wild Argali SPLUNC1. Methods The complete sequence of Wild Argali SPLUNC1 cDNA was generated by rapid amplification of cDNA ends. The entire coding sequence was inserted into the pPIC9K vector and expressed in Pichia pastoris (P. pastoris) GS115. The recombinant SPLUNC1 protein was detected by Western blot and purified by Ni2+ chelate affinity chromatography. The test of effect of the protein on Mycoplasma ovipneumoniae (MO) was performed with real-time polymerase chain reaction. Results The Wild Argali SPLUNC1 cDNA was 1,076 bp with an open reading frame of 768 bp, which encoded a 26.49 kDa protein composed of 255 amino acids. Its amino acid sequence shared 98.4%, 96.9%, 94.5%, 90.2%, 80.8%, 78.4%, 78.3%, 72.5%, 72.3%, 68.8% identity with those of SPLUNC1 cDNA from Ovis aries (accession no. NP_001288334.1), Capra hircus (accession no. XP_005688516.1), Pantholops hodgsonii (accession no. XP_005979709.1), Bos taurus (accession no. NP_776851.1), Felis catus (accession no. XP_006929910.1), Homo sapiens (accession no. NP_001230122.1), Sus scrofa (accession no. NP_001005727.1), Chinchilla lanigera (accession no. NP_001269294.1), Mus musculus (accession no. NP_035256.2), and Rattus norvegicus (accession no. NP_742028.1), respectively. The recombinant protein corresponded to the expected molecular mass of 25.47 kDa as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it was detected in the supernatant of P. pastoris, and it could be purified. The results from the test of inhibition effect of argali recombinant SPLUNC1 protein on MO showed that the product could inhibit MO very well (p<0.01). Conclusion The amino acid sequence of Wild Argali SPLUNC1 was different from other organisms. The recombinant SPLUNC1 protein has good biological activity

    Wideband Power Spectrum Sensing: a Fast Practical Solution for Nyquist Folding Receiver

    Full text link
    The limited availability of spectrum resources has been growing into a critical problem in wireless communications, remote sensing, and electronic surveillance, etc. To address the high-speed sampling bottleneck of wideband spectrum sensing, a fast and practical solution of power spectrum estimation for Nyquist folding receiver (NYFR) is proposed in this paper. The NYFR architectures is can theoretically achieve the full-band signal sensing with a hundred percent of probability of intercept. But the existing algorithm is difficult to realize in real-time due to its high complexity and complicated calculations. By exploring the sub-sampling principle inherent in NYFR, a computationally efficient method is introduced with compressive covariance sensing. That can be efficient implemented via only the non-uniform fast Fourier transform, fast Fourier transform, and some simple multiplication operations. Meanwhile, the state-of-the-art power spectrum reconstruction model for NYFR of time-domain and frequency-domain is constructed in this paper as a comparison. Furthermore, the computational complexity of the proposed method scales linearly with the Nyquist-rate sampled number of samples and the sparsity of spectrum occupancy. Simulation results and discussion demonstrate that the low complexity in sampling and computation is a more practical solution to meet the real-time wideband spectrum sensing applications

    Distributed UAV Swarm Augmented Wideband Spectrum Sensing Using Nyquist Folding Receiver

    Full text link
    Distributed unmanned aerial vehicle (UAV) swarms are formed by multiple UAVs with increased portability, higher levels of sensing capabilities, and more powerful autonomy. These features make them attractive for many recent applica-tions, potentially increasing the shortage of spectrum resources. In this paper, wideband spectrum sensing augmented technology is discussed for distributed UAV swarms to improve the utilization of spectrum. However, the sub-Nyquist sampling applied in existing schemes has high hardware complexity, power consumption, and low recovery efficiency for non-strictly sparse conditions. Thus, the Nyquist folding receiver (NYFR) is considered for the distributed UAV swarms, which can theoretically achieve full-band spectrum detection and reception using a single analog-to-digital converter (ADC) at low speed for all circuit components. There is a focus on the sensing model of two multichannel scenarios for the distributed UAV swarms, one with a complete functional receiver for the UAV swarm with RIS, and another with a decentralized UAV swarm equipped with a complete functional receiver for each UAV element. The key issue is to consider whether the application of RIS technology will bring advantages to spectrum sensing and the data fusion problem of decentralized UAV swarms based on the NYFR architecture. Therefore, the property for multiple pulse reconstruction is analyzed through the Gershgorin circle theorem, especially for very short pulses. Further, the block sparse recovery property is analyzed for wide bandwidth signals. The proposed technology can improve the processing capability for multiple signals and wide bandwidth signals while reducing interference from folded noise and subsampled harmonics. Experiment results show augmented spectrum sensing efficiency under non-strictly sparse conditions

    A Quantum Mechanism Study of the C-C Bond Cleavage to Predict the Bio-Catalytic Polyethylene Degradation

    Get PDF
    The growing amount of plastic solid waste (PSW) is a global concern. Despite increasing efforts to reduce the residual amounts of PSW to be disposed off through segregated collection and recycling, a considerable amount of PSW is still landfilled and the extent of PSW ocean pollution has become a worldwide issue. Particularly, polyethylene (PE) and polystyrene (PS) are considered as notably recalcitrant to biodegradation due to the carbon-carbon backbone that is highly resistant to enzymatic degradation via oxidative reactions. The present research investigated the catalytic mechanism of P450 monooxygenases by quantum mechanics to determine the bio-catalytic degradation of PE or PS. The findings indicated that the oxygenase-induced free radical transition caused the carbon-carbon backbone cleavage of aliphatic compounds. This work provides a fundamental knowledge of the biodegradation process of PE or PS at the atomic level and facilitates predicting the pathway of plastics’ biodegradation by microbial enzymes

    Abnormal focal segments in left uncinate fasciculus in adults with obsessive–compulsive disorder

    Get PDF
    BackgroundAlthough the specific role of the uncinate fasciculus (UF) in emotional processing in patients with obsessive–compulsive disorder (OCD) has been investigated, the exact focal abnormalities in the UF have not been identified. The aim of the current study was to identify focal abnormalities in the white matter (WM) microstructure of the UF and to determine the associations between clinical features and structural neural substrates.MethodsIn total, 71 drug-naïve patients with OCD and 81 age- and sex-matched healthy controls (HCs) were included. Automated fiber quantification (AFQ), a tract-based quantitative approach, was adopted to measure alterations in diffusion parameters, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD), along the trajectory of the UF. Additionally, we utilized partial correlation analyses to explore the relationship between the altered diffusion parameters and clinical characteristics.ResultsOCD patients showed significantly higher FA and lower RD at the level of the temporal and insular portions in the left UF than HCs. In the insular segments of the left UF, increased FA was positively correlated with the Hamilton Anxiety Scale (HAMA) score, while decreased RD was negatively correlated with the duration of illness.ConclusionWe observed specific focal abnormalities in the left UF in adult patients with OCD. Correlations with measures of anxiety and duration of illness underscore the functional importance of the insular portion of left UF disturbance in OCD patients

    Quantum Neuronal Sensing of Quantum Many-Body States on a 61-Qubit Programmable Superconducting Processor

    Full text link
    Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61 qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.Comment: 7 pages, 3 figures in the main text, and 13 pages, 13 figures, and 1 table in supplementary material
    • …
    corecore