10 research outputs found

    Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    Get PDF
    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention

    Supplementary Table 1 -Supplemental material for Patient-Reported Disease-Modifying Therapy Adherence in the Clinic: A Reliable Metric?

    No full text
    <p>Supplemental material, Supplementary Table 1 for Patient-Reported Disease-Modifying Therapy Adherence in the Clinic: A Reliable Metric? by Devon S Conway, Maria Cecilia Vieira, Nicolas R Thompson, Kaila N Parker, Xiangyi Meng and Robert J Fox in Multiple Sclerosis Journal – Experimental, Translational and Clinical</p

    Hybrid flagellin as a T cell independent vaccine scaffold

    No full text
    BACKGROUND: To extend the potency of vaccines against infectious diseases, vaccines should be able to exploit multiple arms of the immune system. One component of the immune system that is under-used in vaccine design is the subset of B cells known to be capable of responding to repetitive antigenic epitopes and differentiate into plasma cells even in the absence of T cell help (T-independent, TI). RESULTS: To target vaccine responses from T-independent B cells, we reengineered a bacterial Flagellin (FliC) by replacing its exposed D3 domain with a viral envelope protein from Dengue virus (DENV2). The resulting hybrid FliC protein (hFliC) was able to form stable filaments decorated with conformationally intact DENV2 envelope domains. These filaments were not only capable of inducing a T cell-dependent (TD) humoral antibody response, but also significant IgM and IgG3 antibody response in a helper T cell repertoire-restricted transgenic mouse model. CONCLUSIONS: Our results provide proof-of-principle demonstration that a reengineered hybrid FliC could be used as a platform for polymeric subunit vaccines, enhancing T cell-dependent and possibly inducing T-independent antibody responses from B-1 B cells as well. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12896-015-0194-0) contains supplementary material, which is available to authorized users

    The gastrointestinal tract in uremia

    No full text

    The regulation of the intracellular pH in cells from vertebrates

    No full text

    REFERENCES

    No full text
    corecore