52 research outputs found

    Detection of False Data Injection Attacks Using the Autoencoder Approach

    Full text link
    State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measurements in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in 'normal' operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.Comment: 6 pages, 5 figures, 1 table, conferenc

    Probabilistic Short-Term Wind Power Forecasting Using Sparse Bayesian Learning and NWP

    Get PDF
    Probabilistic short-term wind power forecasting is greatly significant for the operation of wind power scheduling and the reliability of power system. In this paper, an approach based on Sparse Bayesian Learning (SBL) and Numerical Weather Prediction (NWP) for probabilistic wind power forecasting in the horizon of 1–24 hours was investigated. In the modeling process, first, the wind speed data from NWP results was corrected, and then the SBL was used to build a relationship between the combined data and the power generation to produce probabilistic power forecasts. Furthermore, in each model, the application of SBL was improved by using modified-Gaussian kernel function and parameters optimization through Particle Swarm Optimization (PSO). To validate the proposed approach, two real-world datasets were used for construction and testing. For deterministic evaluation, the simulation results showed that the proposed model achieves a greater improvement in forecasting accuracy compared with other wind power forecast models. For probabilistic evaluation, the results of indicators also demonstrate that the proposed model has an outstanding performance

    Displacement Investigation of KNN-Bitumen-Based Piezoceramics in Asphalt Concrete

    Get PDF
    Piezoelectric material has excellent characteristics of electromechanical coupling so that it could be widely applied in structural health monitoring field. Nondestructive testing of piezoelectric technique becomes a research focus on piezoelectric field. Asphalt concrete produces cumulative damage under the multiple repeated vehicle load and natural situation, so it is suited material and structure for nondestructive application. In this study, a test system was established by driving power of piezoceramic, laser displacement sensor, computer, and piezo-embedded asphalt concrete. Displacement, hysteresis, creeps, and dynamic behavior of KNN piezoceramic element embedded in asphalt concrete were tested. The results indicate that displacement output attained 0.4 μm to 0.7 μm when the loads were from 0 N to 150 N. The hysteresis was not obvious when the load was from 0 N to 100 N, aside from higher loads. The creep phenomenon can be divided into two parts: uptrend and balance. The more serious the asphalt binder ageing is, the larger the displacement is, when piezo-asphalt concrete has already been in serious ageing

    The competition and equilibrium in power markets under decarbonization and decentralization

    Get PDF
    Equilibrium analysis has been widely studied as an effective tool to model gaming interactions and predict market results. However, as competition modes are fundamentally changed by the decarbonization and decentralization of power systems, analysis techniques must evolve. This article comprehensively reviews recent developments in modelling methods, practical settings and solution techniques in equilibrium analysis. Firstly, we review equilibrium in the evolving wholesale power markets which feature new entrants, novel trading products and multi-stage clearing. Secondly, the competition modes in the emerging distribution market and distributed resource aggregation are reviewed, and we compare peer-to-peer clearing, cooperative games and Stackelberg games. Furthermore, we summarize the methods to treat various information acquisition degrees, risk preferences and rationalities of market participants. To deal with increasingly complex market settings, this review also covers refined analytical techniques and agent-based models used to compute the equilibrium. Finally, based on this review, this paper summarizes key issues in the gaming and equilibrium analysis in power markets under decarbonization and decentralization

    Numerical Investigations of a Non-Uniform Stator Dihedral Design Strategy for a Boundary Layer Ingestion (BLI) Fan

    No full text
    A distributed propulsion system has the advantage of saving 5–15% fuel burn through ingesting the fuselage boundary layer of an aircraft by fan or compressor. However, due to boundary layer ingestion (BLI), the fan stage will continuously operate under serious inlet distortion. This will lead to a circumferentially non-uniform flow separation distribution on the stator blade suction surface along the annulus, which significantly decreases the fan’s adiabatic efficiency. To solve this problem, a non-uniform stator dihedral design strategy has been developed to explore its potential of improving BLI fan performance. First, the stator full-annulus blade passages were divided into blade dihedral design regions and baseline design regions on the basis of the additional aerodynamic loss distributions caused by BLI inlet distortion. Then, to find the appropriate dihedral design parameters, the full-annulus BLI fan was discretized into several portions according to the rotor blade number and the dihedral design parameter investigations for dihedral depth and dihedral angle were conducted at the portion with the largest inflow distortion through a single-blade-passage computational model. The optimal combinational dihedral design parameter (dihedral depth 0.3, dihedral angle 6 deg) was applied to the blade passages with notable flow loss which were mainly located in the annulus positions from −120 to 60 degrees suffering from inlet distortion, while the blades in the low-loss annulus locations were unchanged. In this way, a non-uniform stator dihedral design scheme was achieved. In the end, the effectiveness of the non-uniform stator dihedral design was validated by analyzing the internal flow fields of the BLI fan. The results show that the stator dihedral design in distorted regions can increase the inlet axial velocity and reduce the aerodynamic load near the blade trailing edge, which are beneficial for suppressing the flow separations and reducing aerodynamic loss. Specifically, compared with the baseline design, the non-uniform stator dihedral design has achieved a reduction of aerodynamic loss of about 7.7%. The fan stage has presented an improvement of adiabatic efficiency of about 0.48% at the redesigned point without sacrificing the total pressure ratio. In the entire operating range, the redesigned fan has also shown a higher adiabatic efficiency than the baseline design with no reduction of the total pressure ratio, which provides a probable guideline for future BLI distortion-tolerant fan design

    Effects of rhizosphere and long-term fertilisation practices on the activity and community structure of ammonia oxidisers under double-cropping rice field

    No full text
    The potential nitrification activity (PNA), population size and composition of AOB and AOA communities in both rhizosphere and bulk soil from a long-term (32 year) fertiliser field experiment conducted during early rice and late rice seasons were investigated by using the shaken slurry method and quantitative real-time polymerase chain reaction. The experiment begins in 1986, and including five treatments: without fertiliser input, chemical fertiliser alone, rice straw residue and chemical fertiliser, low organic manure rate and chemical fertiliser and high organic manure rate and chemical fertiliser. The results showed that the application of chemical fertiliser greatly enhanced PNA and AOB abundance, while application of rice straw residue and organic manure increased AOA abundance. Moreover, the results showed that the PNA and population sizes of AOB and AOA were higher in the rhizosphere than in the bulk soil. Cluster and redundancy analyses further indicated that the rhizosphere effect play a more important role in shaping AOA community structure than long-term fertilization. In summary, the results indicated that AOB rather than AOA functionally dominate ammonia oxidation in the double-cropping rice paddy soils, and that rhizosphere effect and fertiliser regime play different roles in the activity and community structures of AOB and AOA
    • …
    corecore