5 research outputs found

    Accelerating Matrix/boundary Precipitations to Explore High-Strength and High-Ductile Co34cr32ni27al3.5ti3.5 Multicomponent Alloys through Hot Extrusion and Annealing

    No full text
    Annealing-regulated precipitation strengthening combined with cold-working is one of the most efficient strategies for resolving the conflict between strength and ductility in metals and alloys. However, precipitation control and grain refinement are mutually contradictory due to the excellent phase stability of multicomponent alloys. This work utilizes the high-temperature extrusion and annealing to optimize the microstructures and mechanical properties of the Co34Cr32Ni27Al3.5Ti3.5 multicomponent alloy. Hot extrusion effectively reduces grain sizes and simultaneously accelerates the precipitation of coherent L12 nanoparticles inside the face-centered cubic (FCC) matrix and grain boundary precipitations (i.e., submicron Cr-rich particles and L12-Ni3(Ti, Al) precipitates), resulting in strongly reciprocal interaction between dislocation slip and hierarchical-scale precipitates. Subsequent annealing regulates grain sizes, dislocations, twins, and precipitates, further allowing to tailor mechanical properties. The high yield strength is attributed to the coupled precipitation strengthening effects from nanoscale coherent L12 particles inside grains and submicron grain boundary precipitates under the support of pre-existing dislocations. The excellent ductility results from the synergistic activation of dislocations, stacking faults, and twins during plastic deformation. The present study provides a promising approach for regulating microstructures, especially defects, and enhancing the mechanical properties of multicomponent alloys

    Intracisternal tuberculoma: a refractory type of tuberculoma indicating surgical intervention

    No full text
    Abstract Background Central nervous system (CNS) tuberculoma is a rare disease with severe neurological deficits. This retrospective research is to review the data of patients diagnosed as CNS tuberculoma. Surgeries were performed in all patients. The clinical features especially the neurological image and the anatomical characters of the tuberculomas were concerned. Methods Totally 11 patients diagnosed as CNS tuberculoma were admitted in Guangzhou First People’s Hospital (7cases) and Changzheng Hospital (4 cases) during 2006–2015. The data including preoperative condition, neurological imaging, and surgical findings was collected and analyzed. Results The lesions of nine patients (9/11) were totally or subtotally excised and two (2/11) were partially excised. Neurological functions of all patients were improved after surgery without secondary infection. Lesions of nine (9/11) patients preoperatively progressed as a result of paradoxical reaction. Of the 9 patients demonstrated paradoxical progression, all lesions were partially or totally located at the cisterns or the subarachnoid space. Preoperative ATTs lasted 2 to 12 months and tuberculomas were not eliminated. The arachnoid was found thickened and tightly adhered to the lesions during surgeries. Of the 2 cases that paradoxical reaction were excluded, both patients (case 6, intramedullary tuberculoma; case 11, intradural extramedullary tuberculoma) were admitted at onset of the disease. ATTs were preoperatively given for 1 week as neurological deficits aggravated. The tuberculous lesions of CNS or other system showed no obvious change and paradoxical reaction could not be established in both cases. Conclusions Exudates of tuberculosis is usually accumulated in the cisterns and frequently results in the paradoxical formation of tuberculoma. Intracisternal tuberculoma is closely related to paradoxical reaction and refractory to anti-tuberculosis therapy. Micro-surgical excision is safe and effective. Early surgical intervention may be considered in the diagnosis of intracisternal tuberculoma especially when paradoxical reaction participates in the development of tuberculoma
    corecore