59 research outputs found

    LPN: Language-guided Prototypical Network for few-shot classification

    Full text link
    Few-shot classification aims to adapt to new tasks with limited labeled examples. To fully use the accessible data, recent methods explore suitable measures for the similarity between the query and support images and better high-dimensional features with meta-training and pre-training strategies. However, the potential of multi-modality information has barely been explored, which may bring promising improvement for few-shot classification. In this paper, we propose a Language-guided Prototypical Network (LPN) for few-shot classification, which leverages the complementarity of vision and language modalities via two parallel branches. Concretely, to introduce language modality with limited samples in the visual task, we leverage a pre-trained text encoder to extract class-level text features directly from class names while processing images with a conventional image encoder. Then, a language-guided decoder is introduced to obtain text features corresponding to each image by aligning class-level features with visual features. In addition, to take advantage of class-level features and prototypes, we build a refined prototypical head that generates robust prototypes in the text branch for follow-up measurement. Finally, we aggregate the visual and text logits to calibrate the deviation of a single modality. Extensive experiments demonstrate the competitiveness of LPN against state-of-the-art methods on benchmark datasets

    Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals

    Full text link
    To explore new constituents in two-dimensional materials and to combine their best in van der Waals heterostructures, are in great demand as being unique platform to discover new physical phenomena and to design novel functionalities in interface-based devices. Herein, PbI2 crystals as thin as few-layers are first synthesized, particularly through a facile low-temperature solution approach with the crystals of large size, regular shape, different thicknesses and high-yields. As a prototypical demonstration of flexible band engineering of PbI2-based interfacial semiconductors, these PbI2 crystals are subsequently assembled with several transition metal dichalcogenide monolayers. The photoluminescence of MoS2 is strongly enhanced in MoS2/PbI2 stacks, while a dramatic photoluminescence quenching of WS2 and WSe2 is revealed in WS2/PbI2 and WSe2/PbI2 stacks. This is attributed to the effective heterojunction formation between PbI2 and these monolayers, but type I band alignment in MoS2/PbI2 stacks where fast-transferred charge carriers accumulate in MoS2 with high emission efficiency, and type II in WS2/PbI2 and WSe2/PbI2 stacks with separated electrons and holes suitable for light harvesting. Our results demonstrate that MoS2, WS2, WSe2 monolayers with very similar electronic structures themselves, show completely distinct light-matter interactions when interfacing with PbI2, providing unprecedent capabilities to engineer the device performance of two-dimensional heterostructures.Comment: 36 pages, 5 figure

    Greenhouse gas emissions from U.S. crude oil pipeline accidents:1968 to 2020

    Get PDF
    Abstract Crude oil pipelines are considered as the lifelines of energy industry. However, accidents of the pipelines can lead to severe public health and environmental concerns, in which greenhouse gas (GHG) emissions, primarily methane, are frequently overlooked. While previous studies examined fugitive emissions in normal operation of crude oil pipelines, emissions resulting from accidents were typically managed separately and were therefore not included in the emission account of oil systems. To bridge this knowledge gap, we employed a bottom-up approach to conducted the first-ever inventory of GHG emissions resulting from crude oil pipeline accidents in the United States at the state level from 1968 to 2020, and leveraged Monte Carlo simulation to estimate the associated uncertainties. Our results reveal that GHG emissions from accidents in gathering pipelines (~720,000 tCO2e) exceed those from transmission pipelines (~290,000 tCO2e), although significantly more accidents have occurred in transmission pipelines (6883 cases) than gathering pipelines (773 cases). Texas accounted for over 40% of total accident-related GHG emissions nationwide. Our study contributes to enhanced accuracy of the GHG account associated with crude oil transport and implementing the data-driven climate mitigation strategies

    Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons.

    Get PDF
    All-optical control of nonlinear photonic processes in nanomaterials is of significant interest from a fundamental viewpoint and with regard to applications ranging from ultrafast data processing to spectroscopy and quantum technology. However, these applications rely on a high degree of control over the nonlinear response, which still remains elusive. Here, we demonstrate giant and broadband all-optical ultrafast modulation of second-harmonic generation (SHG) in monolayer transition-metal dichalcogenides mediated by the modified excitonic oscillation strength produced upon optical pumping. We reveal a dominant role of dark excitons to enhance SHG by up to a factor of ∼386 at room temperature, 2 orders of magnitude larger than the current state-of-the-art all-optical modulation results. The amplitude and sign of the observed SHG modulation can be adjusted over a broad spectral range spanning a few electronvolts with ultrafast response down to the sub-picosecond scale via different carrier dynamics. Our results not only introduce an efficient method to study intriguing exciton dynamics, but also reveal a new mechanism involving dark excitons to regulate all-optical nonlinear photonics

    Poultry Infection with Influenza Viruses of Wild Bird Origin, China, 2016

    No full text
    Migratory birds may play a role in transmission of avian influenza virus. We report the infection of black-tailed gulls and chickens in eastern China with avian influenza (H13N2) and (H13N8) viruses. We found that these H13 viruses were transmitted from migratory birds to domestic poultry

    Optimization Design of Large-Aperture Primary Mirror for a Space Remote Camera

    No full text
    Lightweight, high stability, and high-temperature adaptability are the primary considerations when designing the primary mirror of a micro/nano satellite remote sensing camera. In this paper, the optimized design and experimental verification of the large-aperture primary mirror of the space camera with a diameter of Φ610 mm is carried out. First, the design performance index of the primary mirror was determined according to the coaxial tri-reflective optical imaging system. Then, SiC, with excellent comprehensive performance, was selected as the primary mirror material. The initial structural parameters of the primary mirror were obtained using the traditional empirical design method. Due to the improvement of SiC material casting complex structure reflector technology level, the initial structure of the primary mirror was improved by integrating the flange with the primary mirror body design. The support force acts directly on the flange, changing the transmission path of the traditional back plate support force, and has the advantage that the primary mirror surface shape accuracy can be maintained for a long time when subjected to shock, vibration, and temperature changes. Then, a parametric optimization algorithm based on the mathematical method of compromise programming was used to optimize the design of the initial structural parameters of the improved primary mirror and the flexible hinge, and finite element simulation was conducted on the optimally designed primary mirror assembly. Simulation results show that the root mean square (RMS) surface error is less than λ/50 (λ = 632.8 nm) under gravity, 4 °C temperature rise, and 0.01 mm assembly error. The mass of the primary mirror is 8.66 kg. The maximum displacement of the primary mirror assembly is less than 10 μm, and the maximum inclination angle is less than 5″. The fundamental frequency is 203.74 Hz. Finally, after the primary mirror assembly was precision manufactured and assembled, the surface shape accuracy of the primary mirror was tested by ZYGO interferometer, and the test value was 0.02 λ. The vibration test of the primary mirror assembly was conducted at a fundamental frequency of 208.25 Hz. This simulation and experimental results show that the optimized design of the primary mirror assembly meets the design requirements of the space camera
    • …
    corecore