66 research outputs found

    Class Is Invariant to Context and Vice Versa: On Learning Invariance for Out-Of-Distribution Generalization

    Full text link
    Out-Of-Distribution generalization (OOD) is all about learning invariance against environmental changes. If the context in every class is evenly distributed, OOD would be trivial because the context can be easily removed due to an underlying principle: class is invariant to context. However, collecting such a balanced dataset is impractical. Learning on imbalanced data makes the model bias to context and thus hurts OOD. Therefore, the key to OOD is context balance. We argue that the widely adopted assumption in prior work, the context bias can be directly annotated or estimated from biased class prediction, renders the context incomplete or even incorrect. In contrast, we point out the everoverlooked other side of the above principle: context is also invariant to class, which motivates us to consider the classes (which are already labeled) as the varying environments to resolve context bias (without context labels). We implement this idea by minimizing the contrastive loss of intra-class sample similarity while assuring this similarity to be invariant across all classes. On benchmarks with various context biases and domain gaps, we show that a simple re-weighting based classifier equipped with our context estimation achieves state-of-the-art performance. We provide the theoretical justifications in Appendix and codes on https://github.com/simpleshinobu/IRMCon.Comment: Accepted by ECCV 202

    Serum Peptidomics

    Get PDF

    Abnormal regulation of TSG101 in mice with spongiform neurodegeneration

    Get PDF
    AbstractSpongiform neurodegeneration is characterized by the appearance of vacuoles throughout the central nervous system. It has many potential causes, but the underlying cellular mechanisms are not well understood. Mice lacking the E3 ubiquitin ligase Mahogunin Ring Finger-1 (MGRN1) develop age-dependent spongiform encephalopathy. We identified an interaction between a “PSAP” motif in MGRN1 and the ubiquitin E2 variant (UEV) domain of TSG101, a component of the endosomal sorting complex required for transport I (ESCRT-I), and demonstrate that MGRN1 multimonoubiquitinates TSG101. We examined the in vivo consequences of loss of MGRN1 on TSG101 expression and function in the mouse brain. The pattern of TSG101 ubiquitination differed in the brains of wild-type mice and Mgrn1 null mutant mice: at 1 month of age, null mutant mice had less ubiquitinated TSG101, while in adults, mutant mice had more ubiquitinated, insoluble TSG101 than wild-type mice. There was an associated increase in epidermal growth factor receptor (EGFR) levels in mutant brains. These results suggest that loss of MGRN1 promotes ubiquitination of TSG101 by other E3s and may prevent its disassociation from endosomal membranes or cause it to form insoluble aggregates. Our data implicate loss of normal TSG101 function in endo-lysosomal trafficking in the pathogenesis of spongiform neurodegeneration in Mgrn1 null mutant mice

    Dendrobium candidum quality detection in both food and medicine agricultural product: Policy, status, and prospective

    Get PDF
    Dendrobium candidum (DC) is an agricultural product for both food and medicine. It has a variety of beneficial effects on the human body with antioxidant, anti-inflammatory, antitumor, enhancing immune function, and other pharmacological activities. Due to less natural distribution, harsh growth conditions, slow growth, low reproduction rate, and excessive logging, wild DC has been seriously damaged and listed as an endangered herbal medicine variety in China. At present, the quality of DC was uneven in the market, so it is very necessary to detect its quality. This article summarized the methods of DC quality detection with traditional and rapid nondestructive, and it also expounded the correlation between DC quality factor and endophytes, which provides a theoretical basis for a variety of rapid detection methods in macromolecules. At last, this article put forward a variety of rapid nondestructive detection methods based on the emission spectrum. In view of the complexity of molecular structure, the quality correlation established by spectral analysis was greatly affected by varieties and environment. We discussed the possibility of DC quality detection based on the molecular dynamic calculation and simulation mechanism. Also, a multimodal fusion method was proposed to detect the quality. The literature review suggests that it is very necessary to understand the structure performance relationship, kinetic properties, and reaction characteristics of chemical substances at the molecular level by means of molecular chemical calculation and simulation, to detect a certain substance more accurately. At the same time, several modes are combined to form complementarity, eliminate ambiguity, and uncertainty and fuse the information of multiple modes to obtain more accurate judgment results

    Factors affecting the transmission of dengue fever in Haikou city in 2019

    Get PDF
    In this study, due to multiple cases of dengue fever in two locations in Haikou, Hainan, several factors affecting the transmission of dengue fever in Haikou in 2019 were analyzed. It was found that dengue fever spread from two sites: a construction site, which was an epidemic site in Haikou, and the university, where only four confirmed cases were reported. Comparative analysis revealed that the important factors affecting the spread of dengue fever in Haikou were environmental hygiene status, knowledge popularization of dengue fever, educational background, medical insurance coverage and free treatment policy knowledge and active response by the government

    Dynamic Simulation on Deflagration of LNG Spill

    No full text
    The deflagration characteristics of premixed LNG vapour-air mixtures with different mixing ratios were quantitatively and qualitatively investigated by using CFD (computational fluid dynamics) method. The CFD model was initially established based on theoretical analysis and then validated by a lab-scale deflagration experiment. The flame propagation behaviour, pressure-time history, and flame speed were compared with the experimental data, upon which a good agreement was achieved. A large-scale deflagration fire during LNG bunkering process was conducted using the model to investigate the flame development and overpressure effects. Mesh independence and time scale were tested in order to obtain the suitable grid resolution and time step. Deflagration cases with two different LNG vapour volume fractions, i.e., 10.4% and 15.0%, were simulated and compared. The one with a volume fraction of 10.4% which was around stoichiometric mixing ratio had the highest flame propagating speed. High flame velocity observed in the simulation was coupled with the thin flame front where overpressure occurred. The CFD model could capture the main features of deflagration combustion and account for LNG fire hazard which could provide an in-depth insight when dealing with complicated cases

    Hazardous Consequence Dynamic Simulation and Risk Analysis of LNG Spill on Water for Ship-to-Ship Bunkering

    Get PDF
    The inland transportation of LNG (liquefied natural gas) by small and medium scale carriers has been acknowledged as an innovated way in the main rivers of China, and the safety issues for LNG bunkering practices have been highly concerned. The significant hazards related with LNG ship-to-ship bunkering could involve LNG vapour dispersion, LNG pool fire and deflagration. LNG vapour initially behaves as a denser-than-air vapour cloud and then is dissipated in surrounding environment. LNG pool fire occurs when bulk LNG releasing on water and encountering ignition source, which could cause thermal radiation damage to the surrounding properties and people. If the dispersed vapour cloud reaches the flammable limits and is ignited, deflagration could occur, as well as flash fire or explosion. The present study aims to capture the feature of these hazards and analyse the potential hazardous area by applying computational fluid dynamics analysis. The pool fire is investigated in order to obtain the thermal radiant flux and temperature and the material effectiveness on both LNG tanker and cargo vessel. The ship side water curtain, which is commonly used to prevent material stress cracking in case of LNG leaking, is considered to mitigate the radiation hazard. In combining with hazardous consequence simulation, a QRA (quantitative risk assessment) was performed to evaluate both individual and social risks of the LNG waterway transportation, with consideration of the crews and social environment at the ship to ship bunkering place. The Pearl River Estuary (PRE) area, which is located at the Southern China Sea coast, was taken as a study case to perform the QRA analysis

    Suppressing artifacts in the total focusing method using the directivity of laser ultrasound

    No full text
    Based on a synthesized laser ultrasonic array, full matrix capture can be used to acquire data, which can then be post-processed using the total focusing method. However, this noncontact ultrasonic imaging technique has not been widely used because of the numerous artifacts in ultrasonic images and time-consuming data acquisition. To address these issues, this study proposes a post-processing algorithm, which uses the laser ultrasound directivity information to suppress the artifacts in the total focusing method’s images. In particular, a weight factor is defined using the directivity information. By multiplying the image intensity of the total focusing method with this factor, the algorithm uses not only the amplitude and phase information of laser ultrasound but also its directivity information. The experimental results indicate that four types of artifacts are suppressed. Because the grating lobe artifacts can be suppressed, a larger element spacing can be used to reduce the data acquisition time
    • …
    corecore