8 research outputs found
Low-dose computed tomography for lung cancer screening in Anhui, China: A randomized controlled trial
BackgroundLung cancer is the leading cause of cancer-related death worldwide, with risk factors such as age and smoking. Low-dose computed tomography screening can reduce lung cancer mortality. However, its effectiveness in Asian populations remains unclear. Most Asian women with lung cancer are non-smokers who have not been screened. We conducted a randomized controlled trial to evaluate the performance of low-dose computed tomography screening in a Chinese population, including high-risk smokers and non-smokers exposed to passive smoking. The baseline data are reported in this study.MethodsBetween May and December 2019, eligible participants were randomized in a ratio of 1:1:1 to a screening (two arms) or control cohort. Non-calcified nodules/masses with a diameter >4 mm on low-dose computed tomography were considered positive findings.ResultsIn total, 600 patients (mean age, 59.1 ± 6.9 years) underwent low-dose computed tomography. Women accounted for 31.5% (189/600) of patients; 89.9% (170/189) were non-smokers/passive smokers. At baseline, the incidence of lung cancer was 1.8% (11/600). The incidence of lung cancer was significantly lower in smokers than in female non-smokers/passive smokers (1.0% [4/415] vs. 4.1% [7/170], respectively; P=0.017). Stage 0–I lung cancer accounted for 90.9% (10/11) of cases.ConclusionsWe demonstrate the importance of including active smokers and female non-smokers/passive smokers in lung cancer screening programs. Further studies are needed to explore the risk factors, and long-term cost–benefit of screening Asian non-smoking women.Clinical trial registrationhttp://chictr.org.cn/showproj.aspx?proj=39003, identifier ChiCTR1900023197
A New Remote Health-Care System Based on Moving Robot Intended for the Elderly at Home
Nowadays, due to the growing need for remote care and the constantly increasing popularity of mobile devices, a large amount of mobile applications for remote care support has been developed. Although mobile phones are very suitable for young people, there are still many problems related to remote health care of the elderly. Due to hearing loss or limited movements, it is difficult for the elderly to contact their families or doctors via real-time video call. In this paper, we introduce a new remote health-care system based on moving robots intended for the elderly at home. Since the proposed system is an online system, the elderly can contact their families and doctors quickly anytime and anywhere. Besides call, our system involves the accurate indoor object detection algorithms and automatic health data collection, which are not included in existing remote care systems. Therefore, the proposed system solves some challenging problems related to the elderly care. The experiment has shown that the proposed care system achieves excellent performance and provides good user experience
Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration
Developmental engineering strategy needs the biomimetic composites that can integrate the progenitor cells, biomaterial matrices and bioactive signals to mimic the natural bone healing process for faster healing and reconstruction of segmental bone defects. We prepared the gelatin-reduced graphene oxide (GOG) and constructed the composites that mimicked the procallus by combining the GOG with the photo-crosslinked gelatin hydrogel. The biological effects of the GOG-reinforced composites could induce the bi-differentiation of bone marrow stromal cells (BMSCs) for rapid bone repair. The proper ratio of GOG in the composites regulated the composites' mechanical properties to a suitable range for the adhesion and proliferation of BMSCs. Besides, the GOG-mediated bidirectional differentiation of BMSCs, including osteogenesis and angiogenesis, could be activated through Erk1/2 and AKT pathway. The methyl vanillate (MV) delivered by GOG also contributed to the bioactive signals of the biomimetic procallus through priming the osteogenesis of BMSCs. During the repair of the calvarial defect in vivo, the initial hypoxic condition due to GOG in the composites gradually transformed into a well-vasculature robust situation with the bi-differentiation of BMSCs, which mimicked the process of bone healing resulting in the rapid bone regeneration. As an inorganic constituent, GOG reinforced the organic photo-crosslinked gelatin hydrogel to form a double-phase biomimetic procallus, which provided the porous extracellular matrix microenvironment and bioactive signals for the bi-directional differentiation of BMSCs. These show a promised application of the bio-reduced graphene oxide in biomedicine with a developmental engineering strategy
Decellularized Disc Hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration
Tissue specificity, a key factor in the decellularized tissue matrix (DTM), has shown bioactive functionalities in tuning cell fate—e.g., the differentiation of mesenchymal stem cells. Notably, cell fate is also determined by the living microenvironment, including material composition and spatial characteristics. Herein, two neighboring tissues within intervertebral discs, the nucleus pulposus (NP) and annulus fibrosus (AF), were carefully processed into DTM hydrogels (abbreviated DNP-G and DAF-G, respectively) to determine the tissue-specific effects on stem cell fate, such as specific components and different culturing methods, as well as in vivo regeneration. Distinct differences in their protein compositions were identified by proteomic analysis. Interestingly, the fate of human bone marrow mesenchymal stem cells (hBMSCs) also responds to both culturing methods and composition. Generally, hBMSCs cultured with DNP-G (3D) differentiated into NP-like cells, while hBMSCs cultured with DAF-G (2D) underwent AF-like differentiation, indicating a close correlation with the native microenvironments of NP and AF cells, respectively. Furthermore, we found that the integrin-mediated RhoA/LATS/YAP1 signaling pathway was activated in DAF-G (2D)-induced AF-specific differentiation. Additionally, the activation of YAP1 determined the tendency of NP- or AF-specific differentiation and played opposite regulatory effects. Finally, DNP-G and DAF-G specifically promoted tissue regeneration in NP degeneration and AF defect rat models, respectively. In conclusion, DNP-G and DAF-G can specifically determine the fate of stem cells through the integrin-mediated RhoA/LATS/YAP1 signaling pathway, and this tissue specificity is both compositional and spatial, supporting the utilization of tissue-specific DTM in advanced treatments of intervertebral disc degeneration