31 research outputs found

    Vertical Layering of Quantized Neural Networks for Heterogeneous Inference

    Full text link
    Although considerable progress has been obtained in neural network quantization for efficient inference, existing methods are not scalable to heterogeneous devices as one dedicated model needs to be trained, transmitted, and stored for one specific hardware setting, incurring considerable costs in model training and maintenance. In this paper, we study a new vertical-layered representation of neural network weights for encapsulating all quantized models into a single one. With this representation, we can theoretically achieve any precision network for on-demand service while only needing to train and maintain one model. To this end, we propose a simple once quantization-aware training (QAT) scheme for obtaining high-performance vertical-layered models. Our design incorporates a cascade downsampling mechanism which allows us to obtain multiple quantized networks from one full precision source model by progressively mapping the higher precision weights to their adjacent lower precision counterparts. Then, with networks of different bit-widths from one source model, multi-objective optimization is employed to train the shared source model weights such that they can be updated simultaneously, considering the performance of all networks. By doing this, the shared weights will be optimized to balance the performance of different quantized models, thus making the weights transferable among different bit widths. Experiments show that the proposed vertical-layered representation and developed once QAT scheme are effective in embodying multiple quantized networks into a single one and allow one-time training, and it delivers comparable performance as that of quantized models tailored to any specific bit-width. Code will be available.Comment: Submitted to IEEE for possible publicatio

    Functional Connectivity of Anterior Insula Predicts Recovery of Patients With Disorders of Consciousness

    Get PDF
    Background: We hypothesize that the anterior insula is important for maintenance of awareness. Here, we explored the functional connectivity alterations of the anterior insula with changes in the consciousness level or over time in patients with disorders of consciousness (DOC) and determined potential correlation with clinical outcomes.Methods: We examined 20 participants (9 patients with DOC and 11 healthy controls). Each patient underwent resting-state functional magnetic resonance imaging (rs-fMRI) and a standardized Coma Recovery Scale-Revised (CRS-R) assessment on the same day. We categorized the patients according to the prognosis: those who emerged from a minimally conscious state (recovery group, n = 4) and those who remained in the unconscious state (unrecovery group, n = 5). Two rs-fMRI scans were obtained from all patients, and the second scan of patients in the recovery group was obtained after they regained consciousness. We performed seed-based fMRI analysis and selected the left ventral agranular insula (vAI) and dorsal agranular insula (dAI) as the regions of interest. Correlations with CRS-R were determined with the Spearman's correlation coefficient.Results: Compared with healthy controls, the functional connectivity between dAI and gyrus rectus of patients who recovered was significantly increased (p < 0.001, cluster-wise family-wise error rate [FWER] < 0.05). The second rs-fMRI scan of patients who remained with DOC showed a significant decreased functional connectivity between the dAI to contralateral insula, pallidum, bilateral inferior parietal lobule (IPL), precentral gyrus, and middle cingulate cortex (p < 0.001, cluster-wise FWER < 0.05) as well as the functional connectivity between vAI to caudate and cingulum contrast to controls (p < 0.001, cluster-wise FWER < 0.05). Finally, the functional connectivity strength of dAI-temporal pole (Spearman r = 0.491, p < 0.05) and dAI-IPL (Spearman r = 0.579, p < 0.05) were positively correlated with CRS-R scores in all DOC patients. The connectivity of dAI-IPL was also positively correlated with clinical scores in the recovery group (Spearman r = 0.807, p < 0.05).Conclusions: Our findings indicate that the recovery of consciousness is associated with an increased connectivity of the dAI to IPL and temporal pole. This possibly highlights the role of the insula in human consciousness. Moreover, longitudinal variations in dAI-IPL and dAI-temporal pole connectivity may be potential hallmarks in the outcome prediction of DOC patients

    Endothelial Adhesion of Targeted Microbubbles in Both Small and Great Vessels Using Ultrasound Radiation Force

    No full text
    The effectiveness of microbubble-mediated ultrasound molecular imaging and drug delivery has been significantly affected by the axial laminar flow of vessels which prevents ultrasound contrast agents (UCAs) from targeting vascular endothelium. Studies show that acoustic manipulation could increase targeted UCA adhesion in microcirculation and some small vessels. In this study we demonstrate that ultrasound radiation force (USRF) can also significantly enhance the targeted adhesion of microbubbles in both small and great vessels. Our results indicate that the UCA adhesion targeted to ICAM-1 expressed on mouse cremaster microvascular endothelial cells increase about 9-fold when USRF is applied at 1 MHz and 73.9 kPa. The adhesion of anti-CD34 microbubbles to the endothelia of rat abdominal aorta was visually analyzed using scanning electron microscopy for the first time and thousands of microbubbles were found attached to the aortic endothelia after USRF application at the same acoustic parameters. Our data illustrate that targeted adhesion of anti-CD34 microbubbles is possible in normal abdominal aorta and we demonstrate the potential of using USRF in molecular imaging of a vascular target

    A 24/7 hospital toxicology service: Experience of a new start-up

    No full text
    Objectives: A toxicology team providing round-the-clock consultations for poisoning was established in Changi General Hospital in November 2014. This study aims to describe the epidemiology of patients referred to this service in 2015. Methods: A retrospective electronic and paper records review of all patients referred to the toxicology service from January to December 2015 was performed for demographics, poisoning, clinical, and outcome data. The cases were graded for poisoning severity score (PSS), likelihood of poisoning exposure and relative contribution to fatality for death cases. Results: A total of 306 cases were referred to this service in 2015. The median age was 34 years with majority being females (54%). The most common cause of poisoning was deliberate self-harm (62%) and the most common route of poisoning was oral (85%). Analgesics (21%) and sedatives (19%) were the most common poisoning classes. Six per cent of patients received decontamination and 17% received antidotes. The likelihood of poisoning exposure was probable to definite certainty for 85% of the cases. Mild poisoning (PSS 0–1) constituted 76% of the cohort, while 22% had moderate to severe poisoning (PSS 2–3). Out of the five fatalities, three were exposure-related fatalities contributing to a fatality rate of 1%. Fifty-four per cent of patients were admitted to the emergency department observation unit, 17% to general inpatient wards and 9% to either intensive care unit or high dependency wards. Conclusions: Although most poisoning cases resulted in mild clinical effects, a small but significant number of severe acuity cases occurred in this cohort

    Ultrasound Mediated Microbubbles Destruction Augmented Sonolysis: An In Vitro and In Vivo Study

    No full text
    Objective. This study was aimed at exploring ultrasound mediated microbubbles destruction (UMMD) assisted sonolysis in both the in vitro and in vivo clots. Methods. Therapeutic ultrasound (TUS) and lipid microbubbles (MBs) were used in whole blood clots and divided into the control, TUS group, and TUS + MB group. Thrombolytic rates and microscopy were performed. Color Doppler flow imaging (CDFI) and angiography were performed to evaluate the recanalization rates and flow scores in femoral arterial thrombus (FAT) in rabbits. FAT were dyed with H&E. Results. The average thrombolytic ratios of TUS + MB group were significantly higher than those of TUS group and the control group (both P<0.05). Clots had different pathological changes. Recanalization rates and flow scores in TUS + MB group were significantly higher than the control and TUS group. Flow scores and recanalization ratios were grade 0 in 0% of the control group, grade I in 25% of TUS group, and grade II or higher in 87.5% of TUS + MB group after 30 min sonolysis. Conclusions. Both the in vitro and in vivo sonolysis can be significantly augmented by the introduction of MBs without thrombolytic agents, which might be induced by the enhanced cavitation via UMMD

    Measuring Agarwood Formation Ratio Quantitatively by Fluorescence Spectral Imaging Technique

    Get PDF
    Agarwood is a kind of important and precious traditional Chinese medicine. With the decreasing of natural agarwood, artificial cultivation has become more and more important in recent years. Quantifying the formation of agarwood is an essential work which could provide information for guiding cultivation and controlling quality. But people only can judge the amount of agarwood qualitatively by experience before. Fluorescence multispectral imaging method is presented to measure the agarwood quantitatively in this paper. A spectral cube from 450 nm to 800 nm was captured under the 365 nm excitation sources. The nonagarwood, agarwood, and rotten wood in the same sample were distinguished based on analyzing the spectral cube. Then the area ratio of agarwood to the whole sample was worked out, which is the quantitative information of agarwood area percentage. To our knowledge, this is the first time that the formation of agarwood was quantified accurately and nondestructively

    Preparation of nanobubbles carrying androgen receptor siRNA and their inhibitory effects on androgen-independent prostate cancer when combined with ultrasonic irradiation.

    No full text
    OBJECTIVE: The objective of this study was to investigate nanobubbles carrying androgen receptor (AR) siRNA and their in vitro and in vivo anti-tumor effects, when combined with ultrasonic irradiation, on androgen-independent prostate cancer (AIPC). MATERIALS AND METHODS: Nanobubbles carrying AR siRNA were prepared using poly-L-lysine and electrostatic adsorption methods. Using C4-2 cell activity as a testing index, the optimal irradiation parameters (including the nanobubble number/cell number ratio, mechanical index [MI], and irradiation time) were determined and used for transfection of three human prostate cancer cell lines (C4-2, LNCaP, and PC-3 cells). The AR expression levels were investigated with RT-PCR and Western blot analysis. Additionally, the effects of the nanobubbles and control microbubbles named SonoVue were assessed via imaging in a C4-2 xenograft model. Finally, the growth and AR expression of seven groups of tumor tissues were assessed using the C4-2 xenograft mouse model. RESULTS: The nanobubbles had an average diameter of 609.5±15.6 nm and could effectively bind to AR siRNA. Under the optimized conditions of a nanobubble number/cell number ratio of 100∶1, an MI of 1.2, and an irradiation time of 2 min, the highest transfection rates in C4-2, LNCaP, and PC-3 cells were 67.4%, 74.0%, and 63.96%, respectively. In the C4-2 and LNCaP cells, treatment with these binding nanobubbles plus ultrasonic irradiation significantly inhibited cell growth and resulted in the suppression of AR mRNA and protein expression. Additionally, contrast-enhanced ultrasound showed that the nanobubbles achieved stronger signals than the SonoVue control in the central hypovascular area of the tumors. Finally, the anti-tumor effect of these nanobubbles plus ultrasonic irradiation was most significant in the xenograft tumor model compared with the other groups. CONCLUSION: Nanobubbles carrying AR siRNA could be potentially used as gene vectors in combination with ultrasonic irradiation for the treatment of AIPC

    Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction

    No full text
    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p<0.01). Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4±1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery

    Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study

    Get PDF
    Mesenchymal stem cell (MSC) therapy shows considerable promise for the treatment of myocardial infarction (MI). However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD) has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism remains unclear. We hypothesize that UTMD promotes MSC homing by upregulating SDF-1/CXCR4, and this study was aimed at exploring this potential mechanism. We analyzed SDF-1/CXCR4 expression after UTMD treatment in vitro and in vivo and counted the number of homing MSCs in MI areas. The in vitro results demonstrated that UTMD not only led to elevated secretion of SDF-1 but also resulted in an increased proportion of MSCs that expressed surface CXCR4. The in vivo findings show an increase in the number of homing MSCs and higher expression of SDF-1/CXCR4 in the UTMD combined with MSCs infusion group compared to other groups. In conclusion, UTMD can increase SDF-1 expression in the ischemic myocardium and upregulate the expression of surface CXCR4 on MSCs, which provides a molecular mechanism for the homing of MSCs assisted by UTMD via SDF-1/CXCR4 axis
    corecore